spi.c 25.5 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009 Carl-Daniel Hailfinger
Stefan Reinauer's avatar
Stefan Reinauer committed
5
 * Copyright (C) 2008 coresystems GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the generic SPI framework
 */

#include <string.h>
#include "flash.h"
27
#include "flashchips.h"
28
#include "spi.h"
29

30 31 32
enum spi_controller spi_controller = SPI_CONTROLLER_NONE;
void *spibar = NULL;

33
void spi_prettyprint_status_register(struct flashchip *flash);
34

35
int spi_send_command(unsigned int writecnt, unsigned int readcnt,
36
		const unsigned char *writearr, unsigned char *readarr)
37
{
38 39
	switch (spi_controller) {
	case SPI_CONTROLLER_IT87XX:
40
		return it8716f_spi_send_command(writecnt, readcnt, writearr,
41
					   readarr);
42 43 44
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_ICH9:
	case SPI_CONTROLLER_VIA:
45
		return ich_spi_send_command(writecnt, readcnt, writearr, readarr);
46
	case SPI_CONTROLLER_SB600:
47
		return sb600_spi_send_command(writecnt, readcnt, writearr, readarr);
48
	case SPI_CONTROLLER_WBSIO:
49
		return wbsio_spi_send_command(writecnt, readcnt, writearr, readarr);
50
	case SPI_CONTROLLER_FT2232:
51
		return ft2232_spi_send_command(writecnt, readcnt, writearr, readarr);
52
	case SPI_CONTROLLER_DUMMY:
53
		return dummy_spi_send_command(writecnt, readcnt, writearr, readarr);
54
	default:
55 56 57
		printf_debug
		    ("%s called, but no SPI chipset/strapping detected\n",
		     __FUNCTION__);
58
	}
59 60 61
	return 1;
}

62 63
int spi_send_multicommand(struct spi_command *spicommands)
{
64 65 66
	int ret = 0;
	while ((spicommands->writecnt || spicommands->readcnt) && !ret) {
		ret = spi_send_command(spicommands->writecnt, spicommands->readcnt,
67
				       spicommands->writearr, spicommands->readarr);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
		/* This awful hack needs to be replaced with a multicommand
		 * capable ICH/VIA SPI driver.
		 */
		if ((ret == SPI_INVALID_OPCODE) &&
		    ((spicommands->writearr[0] == JEDEC_WREN) ||
		     (spicommands->writearr[0] == JEDEC_EWSR))) {
			switch (spi_controller) {
			case SPI_CONTROLLER_ICH7:
			case SPI_CONTROLLER_ICH9:
			case SPI_CONTROLLER_VIA:
				printf_debug(" due to SPI master limitation, ignoring"
					     " and hoping it will be run as PREOP\n");
				ret = 0;
			default:
				break;
			}
		}
		spicommands++;
86
	}
87
	return ret;
88 89
}

90
static int spi_rdid(unsigned char *readarr, int bytes)
91
{
92
	const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
93
	int ret;
94
	int i;
95

96
	ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
97 98
	if (ret)
		return ret;
99 100 101 102
	printf_debug("RDID returned");
	for (i = 0; i < bytes; i++)
		printf_debug(" 0x%02x", readarr[i]);
	printf_debug("\n");
103 104 105
	return 0;
}

106 107
static int spi_rems(unsigned char *readarr)
{
108 109 110 111
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

112
	ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
113 114 115 116 117 118
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
119
		ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
120 121 122
	}
	if (ret)
		return ret;
123 124 125 126
	printf_debug("REMS returned %02x %02x.\n", readarr[0], readarr[1]);
	return 0;
}

127 128
static int spi_res(unsigned char *readarr)
{
129 130 131 132
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

133
	ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
134 135 136 137 138 139
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
140
		ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
141 142 143
	}
	if (ret)
		return ret;
144 145 146 147
	printf_debug("RES returned %02x.\n", readarr[0]);
	return 0;
}

148
int spi_write_enable(void)
149
{
150
	const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
151
	int result;
152 153

	/* Send WREN (Write Enable) */
154
	result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
155 156

	if (result)
157
		printf_debug("%s failed\n", __func__);
158

159
	return result;
160 161
}

162
int spi_write_disable(void)
163
{
164
	const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
165 166

	/* Send WRDI (Write Disable) */
167
	return spi_send_command(sizeof(cmd), 0, cmd, NULL);
168 169
}

170
static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
171
{
172
	unsigned char readarr[4];
173 174
	uint32_t id1;
	uint32_t id2;
175

176
	if (spi_rdid(readarr, bytes))
177 178 179 180 181 182 183 184 185
		return 0;

	if (!oddparity(readarr[0]))
		printf_debug("RDID byte 0 parity violation.\n");

	/* Check if this is a continuation vendor ID */
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
			printf_debug("RDID byte 1 parity violation.\n");
186 187
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
188
		if (bytes > 3) {
189 190
			id2 <<= 8;
			id2 |= readarr[3];
191
		}
192
	} else {
193 194
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
195 196
	}

197
	printf_debug("%s: id1 0x%02x, id2 0x%02x\n", __FUNCTION__, id1, id2);
198

199
	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
200 201 202 203 204 205
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
206 207
	}

208
	/* Test if this is a pure vendor match. */
209
	if (id1 == flash->manufacture_id &&
210 211 212
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

213 214 215
	return 0;
}

216 217
int probe_spi_rdid(struct flashchip *flash)
{
218 219 220 221
	return probe_spi_rdid_generic(flash, 3);
}

/* support 4 bytes flash ID */
222 223
int probe_spi_rdid4(struct flashchip *flash)
{
224
	/* only some SPI chipsets support 4 bytes commands */
225 226 227 228 229 230
	switch (spi_controller) {
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_ICH9:
	case SPI_CONTROLLER_VIA:
	case SPI_CONTROLLER_SB600:
	case SPI_CONTROLLER_WBSIO:
231
	case SPI_CONTROLLER_FT2232:
232
	case SPI_CONTROLLER_DUMMY:
233 234 235 236 237 238
		return probe_spi_rdid_generic(flash, 4);
	default:
		printf_debug("4b ID not supported on this SPI controller\n");
	}

	return 0;
239 240
}

241 242 243
int probe_spi_rems(struct flashchip *flash)
{
	unsigned char readarr[JEDEC_REMS_INSIZE];
244
	uint32_t id1, id2;
245 246 247 248

	if (spi_rems(readarr))
		return 0;

249 250
	id1 = readarr[0];
	id2 = readarr[1];
251

252
	printf_debug("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2);
253

254
	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
255 256 257 258 259 260 261 262 263
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
264
	if (id1 == flash->manufacture_id &&
265 266 267 268 269 270
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	return 0;
}

271 272 273
int probe_spi_res(struct flashchip *flash)
{
	unsigned char readarr[3];
274
	uint32_t id2;
275

276 277 278 279 280
	/* Check if RDID was successful and did not return 0xff 0xff 0xff.
	 * In that case, RES is pointless.
	 */
	if (!spi_rdid(readarr, 3) && ((readarr[0] != 0xff) ||
	    (readarr[1] != 0xff) || (readarr[2] != 0xff)))
281 282 283 284 285
		return 0;

	if (spi_res(readarr))
		return 0;

286 287 288
	id2 = readarr[0];
	printf_debug("%s: id 0x%x\n", __FUNCTION__, id2);
	if (id2 != flash->model_id)
289 290 291 292 293 294 295
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
296 297
}

298
uint8_t spi_read_status_register(void)
299
{
300
	const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
Peter Stuge's avatar
Peter Stuge committed
301
	unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
302
	int ret;
303 304

	/* Read Status Register */
305
	if (spi_controller == SPI_CONTROLLER_SB600) {
306 307 308
		/* SB600 uses a different way to read status register. */
		return sb600_read_status_register();
	} else {
309
		ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
310 311
		if (ret)
			printf_debug("RDSR failed!\n");
312 313
	}

314 315 316
	return readarr[0];
}

317
/* Prettyprint the status register. Common definitions. */
318
void spi_prettyprint_status_register_common(uint8_t status)
319
{
320
	printf_debug("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
321
		     "%sset\n", (status & (1 << 5)) ? "" : "not ");
322
	printf_debug("Chip status register: Bit 4 / Block Protect 2 (BP2) is "
323
		     "%sset\n", (status & (1 << 4)) ? "" : "not ");
324
	printf_debug("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
325
		     "%sset\n", (status & (1 << 3)) ? "" : "not ");
326
	printf_debug("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
327
		     "%sset\n", (status & (1 << 2)) ? "" : "not ");
328
	printf_debug("Chip status register: Write Enable Latch (WEL) is "
329
		     "%sset\n", (status & (1 << 1)) ? "" : "not ");
330
	printf_debug("Chip status register: Write In Progress (WIP/BUSY) is "
331
		     "%sset\n", (status & (1 << 0)) ? "" : "not ");
332 333
}

334 335 336 337 338 339 340
/* Prettyprint the status register. Works for
 * ST M25P series
 * MX MX25L series
 */
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
	printf_debug("Chip status register: Status Register Write Disable "
341
		     "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
342
	printf_debug("Chip status register: Bit 6 is "
343
		     "%sset\n", (status & (1 << 6)) ? "" : "not ");
344 345 346
	spi_prettyprint_status_register_common(status);
}

347 348 349 350 351 352 353 354 355
void spi_prettyprint_status_register_sst25(uint8_t status)
{
	printf_debug("Chip status register: Block Protect Write Disable "
		     "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
	printf_debug("Chip status register: Auto Address Increment Programming "
		     "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

356 357 358 359 360
/* Prettyprint the status register. Works for
 * SST 25VF016
 */
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
361
	const char *bpt[] = {
362 363 364 365 366 367
		"none",
		"1F0000H-1FFFFFH",
		"1E0000H-1FFFFFH",
		"1C0000H-1FFFFFH",
		"180000H-1FFFFFH",
		"100000H-1FFFFFH",
368
		"all", "all"
369
	};
370
	spi_prettyprint_status_register_sst25(status);
371
	printf_debug("Resulting block protection : %s\n",
372
		     bpt[(status & 0x1c) >> 2]);
373 374
}

375 376 377 378 379 380 381 382 383
void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
	const char *bpt[] = {
		"none",
		"0x70000-0x7ffff",
		"0x60000-0x7ffff",
		"0x40000-0x7ffff",
		"all blocks", "all blocks", "all blocks", "all blocks"
	};
384
	spi_prettyprint_status_register_sst25(status);
385
	printf_debug("Resulting block protection : %s\n",
386
		bpt[(status & 0x1c) >> 2]);
387 388
}

389
void spi_prettyprint_status_register(struct flashchip *flash)
390 391 392
{
	uint8_t status;

393
	status = spi_read_status_register();
394 395 396
	printf_debug("Chip status register is %02x\n", status);
	switch (flash->manufacture_id) {
	case ST_ID:
397 398 399 400
		if (((flash->model_id & 0xff00) == 0x2000) ||
		    ((flash->model_id & 0xff00) == 0x2500))
			spi_prettyprint_status_register_st_m25p(status);
		break;
401 402
	case MX_ID:
		if ((flash->model_id & 0xff00) == 0x2000)
403 404 405
			spi_prettyprint_status_register_st_m25p(status);
		break;
	case SST_ID:
406 407
		switch (flash->model_id) {
		case 0x2541:
408
			spi_prettyprint_status_register_sst25vf016(status);
409 410 411 412 413
			break;
		case 0x8d:
		case 0x258d:
			spi_prettyprint_status_register_sst25vf040b(status);
			break;
414
		default:
415 416
			spi_prettyprint_status_register_sst25(status);
			break;
417
		}
418 419 420
		break;
	}
}
421

422 423
int spi_chip_erase_60(struct flashchip *flash)
{
424
	int result;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
442
	
443 444 445 446 447
	result = spi_disable_blockprotect();
	if (result) {
		printf_debug("spi_disable_blockprotect failed\n");
		return result;
	}
448 449
	
	result = spi_send_multicommand(spicommands);
450
	if (result) {
451
		printf_debug("%s failed during command execution\n", __func__);
452 453
		return result;
	}
454 455 456
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
457
	/* FIXME: We assume spi_read_status_register will never fail. */
458
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
459
		programmer_delay(1000 * 1000);
460 461 462 463
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
464 465 466
	return 0;
}

467
int spi_chip_erase_c7(struct flashchip *flash)
468
{
469
	int result;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
487

488 489 490 491 492
	result = spi_disable_blockprotect();
	if (result) {
		printf_debug("spi_disable_blockprotect failed\n");
		return result;
	}
493 494

	result = spi_send_multicommand(spicommands);
495
	if (result) {
496
		printf_debug("%s failed during command execution\n", __func__);
497 498
		return result;
	}
499 500 501
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
502
	/* FIXME: We assume spi_read_status_register will never fail. */
503
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
504
		programmer_delay(1000 * 1000);
505 506 507 508
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
509 510 511
	return 0;
}

512 513 514 515 516 517 518 519 520 521 522
int spi_chip_erase_60_c7(struct flashchip *flash)
{
	int result;
	result = spi_chip_erase_60(flash);
	if (result) {
		printf_debug("spi_chip_erase_60 failed, trying c7\n");
		result = spi_chip_erase_c7(flash);
	}
	return result;
}

523
int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
524
{
525
	int result;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_BE_52, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
543

544 545 546
	result = spi_send_multicommand(spicommands);
	if (result) {
		printf_debug("%s failed during command execution\n", __func__);
547
		return result;
548
	}
549 550 551 552
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
553
		programmer_delay(100 * 1000);
554 555 556 557
	if (check_erased_range(flash, addr, blocklen)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
558 559 560
	return 0;
}

561 562 563 564 565
/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
566
int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
567
{
568
	int result;
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_BE_D8, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
586

587 588 589
	result = spi_send_multicommand(spicommands);
	if (result) {
		printf_debug("%s failed during command execution\n", __func__);
590
		return result;
591
	}
592 593 594
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
595
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
596
		programmer_delay(100 * 1000);
597 598 599 600
	if (check_erased_range(flash, addr, blocklen)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
601 602 603
	return 0;
}

604 605 606 607 608 609 610 611 612 613 614
int spi_chip_erase_d8(struct flashchip *flash)
{
	int i, rc = 0;
	int total_size = flash->total_size * 1024;
	int erase_size = 64 * 1024;

	spi_disable_blockprotect();

	printf("Erasing chip: \n");

	for (i = 0; i < total_size / erase_size; i++) {
615
		rc = spi_block_erase_d8(flash, i * erase_size, erase_size);
616 617 618 619 620 621 622 623 624 625 626
		if (rc) {
			printf("Error erasing block at 0x%x\n", i);
			break;
		}
	}

	printf("\n");

	return rc;
}

627
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
628
int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
629
{
630
	int result;
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_SE, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff) },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
648

649 650 651
	result = spi_send_multicommand(spicommands);
	if (result) {
		printf_debug("%s failed during command execution\n", __func__);
652
		return result;
653
	}
654 655 656
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
657
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
658
		programmer_delay(10 * 1000);
659 660 661 662
	if (check_erased_range(flash, addr, blocklen)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
663 664 665
	return 0;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
		fprintf(stderr, "%s called with incorrect arguments\n", __func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
		fprintf(stderr, "%s called with incorrect arguments\n", __func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

684
int spi_write_status_enable(void)
685 686
{
	const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
687
	int result;
688 689

	/* Send EWSR (Enable Write Status Register). */
690
	result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
691 692 693 694

	if (result)
		printf_debug("%s failed", __func__);
	if (result == SPI_INVALID_OPCODE) {
695 696 697 698
		switch (spi_controller) {
		case SPI_CONTROLLER_ICH7:
		case SPI_CONTROLLER_ICH9:
		case SPI_CONTROLLER_VIA:
699 700 701 702 703 704 705 706 707 708 709
			printf_debug(" due to SPI master limitation, ignoring"
				     " and hoping it will be run as PREOP\n");
			return 0;
		default:
			break;
		}
	}
	if (result)
		printf_debug("\n");

	return result;
710 711
}

712 713 714 715
/*
 * This is according the SST25VF016 datasheet, who knows it is more
 * generic that this...
 */
716
int spi_write_status_register(int status)
717
{
718 719
	const unsigned char cmd[JEDEC_WRSR_OUTSIZE] =
	    { JEDEC_WRSR, (unsigned char)status };
720 721

	/* Send WRSR (Write Status Register) */
722
	return spi_send_command(sizeof(cmd), 0, cmd, NULL);
723 724
}

725
int spi_byte_program(int addr, uint8_t byte)
726
{
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	int result;
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_BYTE_PROGRAM, (addr >> 16) & 0xff, (addr >> 8) & 0xff, (addr & 0xff), byte },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
745

746 747 748 749 750 751
	result = spi_send_multicommand(spicommands);
	if (result) {
		printf_debug("%s failed during command execution\n", __func__);
		return result;
	}
	return result;
752 753
}

754 755
int spi_nbyte_program(int address, uint8_t *bytes, int len)
{
756 757
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
758 759 760 761 762 763
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	struct spi_command spicommands[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
781

782 783 784 785
	if (!len) {
		printf_debug ("%s called for zero-length write\n", __func__);
		return 1;
	}
786
	if (len > 256) {
787
		printf_debug ("%s called for too long a write\n", __func__);
788 789 790 791 792
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

793 794 795 796 797 798
	result = spi_send_multicommand(spicommands);
	if (result) {
		printf_debug("%s failed during command execution\n", __func__);
		return result;
	}
	return result;
799 800
}

801
int spi_disable_blockprotect(void)
802 803
{
	uint8_t status;
804
	int result;
805

806
	status = spi_read_status_register();
807 808 809
	/* If there is block protection in effect, unprotect it first. */
	if ((status & 0x3c) != 0) {
		printf_debug("Some block protection in effect, disabling\n");
810
		result = spi_write_status_enable();
811
		if (result) {
812
			printf_debug("spi_write_status_enable failed\n");
813 814 815 816 817 818 819
			return result;
		}
		result = spi_write_status_register(status & ~0x3c);
		if (result) {
			printf_debug("spi_write_status_register failed\n");
			return result;
		}
820
	}
821
	return 0;
822 823
}

824
int spi_nbyte_read(int address, uint8_t *bytes, int len)
825
{
826 827
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
828 829 830
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
831 832 833
	};

	/* Send Read */
834
	return spi_send_command(sizeof(cmd), len, cmd, bytes);
835 836
}

837 838 839 840
/*
 * Read a complete flash chip.
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
841
int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
842 843
{
	int rc = 0;
844
	int i, j, starthere, lenhere;
845 846 847
	int page_size = flash->page_size;
	int toread;

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
			rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
866 867 868 869 870 871 872 873 874 875
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

876
int spi_chip_read(struct flashchip *flash, uint8_t *buf, int start, int len)
877
{
878 879
	switch (spi_controller) {
	case SPI_CONTROLLER_IT87XX:
880
		return it8716f_spi_chip_read(flash, buf, start, len);
881
	case SPI_CONTROLLER_SB600:
882
		return sb600_spi_read(flash, buf, start, len);
883 884 885
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_ICH9:
	case SPI_CONTROLLER_VIA:
886
		return ich_spi_read(flash, buf, start, len);
887
	case SPI_CONTROLLER_WBSIO:
888
		return wbsio_spi_read(flash, buf, start, len);
889 890
	case SPI_CONTROLLER_FT2232:
		return ft2232_spi_read(flash, buf, start, len);
891
	default:
892 893 894
		printf_debug
		    ("%s called, but no SPI chipset/strapping detected\n",
		     __FUNCTION__);
895 896
	}

897
	return 1;
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
int spi_chip_write_1(struct flashchip *flash, uint8_t *buf)
{
	int total_size = 1024 * flash->total_size;
	int i;

	spi_disable_blockprotect();
	for (i = 0; i < total_size; i++) {
		spi_byte_program(i, buf[i]);
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
915
			programmer_delay(10);
916 917 918 919 920 921 922 923 924
	}

	return 0;
}

/*
 * Program chip using page (256 bytes) programming.
 * Some SPI masters can't do this, they use single byte programming instead.
 */
925
int spi_chip_write_256(struct flashchip *flash, uint8_t *buf)
926
{
927 928
	switch (spi_controller) {
	case SPI_CONTROLLER_IT87XX:
929
		return it8716f_spi_chip_write_256(flash, buf);
930
	case SPI_CONTROLLER_SB600:
931
		return sb600_spi_write_1(flash, buf);
932 933 934
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_ICH9:
	case SPI_CONTROLLER_VIA:
935
		return ich_spi_write_256(flash, buf);
936
	case SPI_CONTROLLER_WBSIO:
937
		return wbsio_spi_write_1(flash, buf);
938 939
	case SPI_CONTROLLER_FT2232:
		return ft2232_spi_write_256(flash, buf);
940
	default:
941 942 943
		printf_debug
		    ("%s called, but no SPI chipset/strapping detected\n",
		     __FUNCTION__);
944 945
	}

946
	return 1;
947
}
948

949 950 951 952 953 954
uint32_t spi_get_valid_read_addr(void)
{
	/* Need to return BBAR for ICH chipsets. */
	return 0;
}

955 956
int spi_aai_write(struct flashchip *flash, uint8_t *buf)
{
957 958
	uint32_t pos = 2, size = flash->total_size * 1024;
	unsigned char w[6] = {0xad, 0, 0, 0, buf[0], buf[1]};
959 960
	int result;

961 962
	switch (spi_controller) {
	case SPI_CONTROLLER_WBSIO:
963 964
		fprintf(stderr, "%s: impossible with Winbond SPI masters,"
				" degrading to byte program\n", __func__);
965
		return spi_chip_write_1(flash, buf);
966 967
	default:
		break;
968
	}
969 970 971 972
	if (flash->erase(flash)) {
		fprintf(stderr, "ERASE FAILED!\n");
		return -1;
	}
973 974 975
	result = spi_write_enable();
	if (result)
		return result;
976
	spi_send_command(6, 0, w, NULL);
977
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
978
		programmer_delay(5); /* SST25VF040B Tbp is max 10us */
979 980 981
	while (pos < size) {
		w[1] = buf[pos++];
		w[2] = buf[pos++];
982
		spi_send_command(3, 0, w, NULL);
983
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
984
			programmer_delay(5); /* SST25VF040B Tbp is max 10us */
985 986 987 988
	}
	spi_write_disable();
	return 0;
}