ichspi.c 56.6 KB
Newer Older
1 2 3 4 5 6
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
 * Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
 * Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
Stefan Reinauer's avatar
Stefan Reinauer committed
7
 * Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
8
 * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
9
 * Copyright (C) 2011 Stefan Tauner
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

26 27
#if defined(__i386__) || defined(__x86_64__)

28
#include <string.h>
29
#include <stdlib.h>
30
#include "flash.h"
31
#include "programmer.h"
32
#include "spi.h"
33
#include "ich_descriptors.h"
34

Stefan Reinauer's avatar
Stefan Reinauer committed
35
/* ICH9 controller register definition */
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define ICH9_REG_HSFS		0x04	/* 16 Bits Hardware Sequencing Flash Status */
#define HSFS_FDONE_OFF		0	/* 0: Flash Cycle Done */
#define HSFS_FDONE		(0x1 << HSFS_FDONE_OFF)
#define HSFS_FCERR_OFF		1	/* 1: Flash Cycle Error */
#define HSFS_FCERR		(0x1 << HSFS_FCERR_OFF)
#define HSFS_AEL_OFF		2	/* 2: Access Error Log */
#define HSFS_AEL		(0x1 << HSFS_AEL_OFF)
#define HSFS_BERASE_OFF		3	/* 3-4: Block/Sector Erase Size */
#define HSFS_BERASE		(0x3 << HSFS_BERASE_OFF)
#define HSFS_SCIP_OFF		5	/* 5: SPI Cycle In Progress */
#define HSFS_SCIP		(0x1 << HSFS_SCIP_OFF)
					/* 6-12: reserved */
#define HSFS_FDOPSS_OFF		13	/* 13: Flash Descriptor Override Pin-Strap Status */
#define HSFS_FDOPSS		(0x1 << HSFS_FDOPSS_OFF)
#define HSFS_FDV_OFF		14	/* 14: Flash Descriptor Valid */
#define HSFS_FDV		(0x1 << HSFS_FDV_OFF)
#define HSFS_FLOCKDN_OFF	15	/* 15: Flash Configuration Lock-Down */
#define HSFS_FLOCKDN		(0x1 << HSFS_FLOCKDN_OFF)

#define ICH9_REG_HSFC		0x06	/* 16 Bits Hardware Sequencing Flash Control */
#define HSFC_FGO_OFF		0	/* 0: Flash Cycle Go */
#define HSFC_FGO		(0x1 << HSFC_FGO_OFF)
#define HSFC_FCYCLE_OFF		1	/* 1-2: FLASH Cycle */
#define HSFC_FCYCLE		(0x3 << HSFC_FCYCLE_OFF)
					/* 3-7: reserved */
#define HSFC_FDBC_OFF		8	/* 8-13: Flash Data Byte Count */
#define HSFC_FDBC		(0x3f << HSFC_FDBC_OFF)
					/* 14: reserved */
#define HSFC_SME_OFF		15	/* 15: SPI SMI# Enable */
#define HSFC_SME		(0x1 << HSFC_SME_OFF)

67 68
#define ICH9_REG_FADDR		0x08	/* 32 Bits */
#define ICH9_REG_FDATA0		0x10	/* 64 Bytes */
Stefan Reinauer's avatar
Stefan Reinauer committed
69

70 71 72 73
#define ICH9_REG_FRAP		0x50	/* 32 Bytes Flash Region Access Permissions */
#define ICH9_REG_FREG0		0x54	/* 32 Bytes Flash Region 0 */

#define ICH9_REG_PR0		0x74	/* 32 Bytes Protected Range 0 */
74 75
#define PR_WP_OFF		31	/* 31: write protection enable */
#define PR_RP_OFF		15	/* 15: read protection enable */
76

77
#define ICH9_REG_SSFS		0x90	/* 08 Bits */
78 79 80 81 82 83 84 85
#define SSFS_SCIP_OFF		0	/* SPI Cycle In Progress */
#define SSFS_SCIP		(0x1 << SSFS_SCIP_OFF)
#define SSFS_FDONE_OFF		2	/* Cycle Done Status */
#define SSFS_FDONE		(0x1 << SSFS_FDONE_OFF)
#define SSFS_FCERR_OFF		3	/* Flash Cycle Error */
#define SSFS_FCERR		(0x1 << SSFS_FCERR_OFF)
#define SSFS_AEL_OFF		4	/* Access Error Log */
#define SSFS_AEL		(0x1 << SSFS_AEL_OFF)
86
/* The following bits are reserved in SSFS: 1,5-7. */
87
#define SSFS_RESERVED_MASK	0x000000e2
Stefan Reinauer's avatar
Stefan Reinauer committed
88

89 90
#define ICH9_REG_SSFC		0x91	/* 24 Bits */
/* We combine SSFS and SSFC to one 32-bit word,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 * therefore SSFC bits are off by 8. */
						/* 0: reserved */
#define SSFC_SCGO_OFF		(1 + 8)		/* 1: SPI Cycle Go */
#define SSFC_SCGO		(0x1 << SSFC_SCGO_OFF)
#define SSFC_ACS_OFF		(2 + 8)		/* 2: Atomic Cycle Sequence */
#define SSFC_ACS		(0x1 << SSFC_ACS_OFF)
#define SSFC_SPOP_OFF		(3 + 8)		/* 3: Sequence Prefix Opcode Pointer */
#define SSFC_SPOP		(0x1 << SSFC_SPOP_OFF)
#define SSFC_COP_OFF		(4 + 8)		/* 4-6: Cycle Opcode Pointer */
#define SSFC_COP		(0x7 << SSFC_COP_OFF)
						/* 7: reserved */
#define SSFC_DBC_OFF		(8 + 8)		/* 8-13: Data Byte Count */
#define SSFC_DBC		(0x3f << SSFC_DBC_OFF)
#define SSFC_DS_OFF		(14 + 8)	/* 14: Data Cycle */
#define SSFC_DS			(0x1 << SSFC_DS_OFF)
#define SSFC_SME_OFF		(15 + 8)	/* 15: SPI SMI# Enable */
#define SSFC_SME		(0x1 << SSFC_SME_OFF)
#define SSFC_SCF_OFF		(16 + 8)	/* 16-18: SPI Cycle Frequency */
#define SSFC_SCF		(0x7 << SSFC_SCF_OFF)
#define SSFC_SCF_20MHZ		0x00000000
#define SSFC_SCF_33MHZ		0x01000000
						/* 19-23: reserved */
113
#define SSFC_RESERVED_MASK	0xf8008100
Stefan Reinauer's avatar
Stefan Reinauer committed
114

115 116 117
#define ICH9_REG_PREOP		0x94	/* 16 Bits */
#define ICH9_REG_OPTYPE		0x96	/* 16 Bits */
#define ICH9_REG_OPMENU		0x98	/* 64 Bits */
118

119 120 121
#define ICH9_REG_BBAR		0xA0	/* 32 Bits BIOS Base Address Configuration */
#define BBAR_MASK	0x00ffff00		/* 8-23: Bottom of System Flash */

122 123 124 125 126 127 128 129 130 131
#define ICH8_REG_VSCC		0xC1	/* 32 Bits Vendor Specific Component Capabilities */
#define ICH9_REG_LVSCC		0xC4	/* 32 Bits Host Lower Vendor Specific Component Capabilities */
#define ICH9_REG_UVSCC		0xC8	/* 32 Bits Host Upper Vendor Specific Component Capabilities */
/* The individual fields of the VSCC registers are defined in the file
 * ich_descriptors.h. The reason is that the same layout is also used in the
 * flash descriptor to define the properties of the different flash chips
 * supported. The BIOS (or the ME?) is responsible to populate the ICH registers
 * with the information from the descriptor on startup depending on the actual
 * chip(s) detected. */

132 133 134 135
#define ICH9_REG_FPB		0xD0	/* 32 Bits Flash Partition Boundary */
#define FPB_FPBA_OFF		0	/* 0-12: Block/Sector Erase Size */
#define FPB_FPBA			(0x1FFF << FPB_FPBA_OFF)

136
// ICH9R SPI commands
137 138 139 140
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS		0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS	1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS	2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS	3
141

Stefan Reinauer's avatar
Stefan Reinauer committed
142
// ICH7 registers
143
#define ICH7_REG_SPIS		0x00	/* 16 Bits */
144 145 146 147 148
#define SPIS_SCIP		0x0001
#define SPIS_GRANT		0x0002
#define SPIS_CDS		0x0004
#define SPIS_FCERR		0x0008
#define SPIS_RESERVED_MASK	0x7ff0
Stefan Reinauer's avatar
Stefan Reinauer committed
149

150 151 152 153 154 155 156 157 158 159
/* VIA SPI is compatible with ICH7, but maxdata
   to transfer is 16 bytes.

   DATA byte count on ICH7 is 8:13, on VIA 8:11

   bit 12 is port select CS0 CS1
   bit 13 is FAST READ enable
   bit 7  is used with fast read and one shot controls CS de-assert?
*/

160 161 162 163 164
#define ICH7_REG_SPIC		0x02	/* 16 Bits */
#define SPIC_SCGO		0x0002
#define SPIC_ACS		0x0004
#define SPIC_SPOP		0x0008
#define SPIC_DS			0x4000
Stefan Reinauer's avatar
Stefan Reinauer committed
165

166 167 168 169 170
#define ICH7_REG_SPIA		0x04	/* 32 Bits */
#define ICH7_REG_SPID0		0x08	/* 64 Bytes */
#define ICH7_REG_PREOP		0x54	/* 16 Bits */
#define ICH7_REG_OPTYPE		0x56	/* 16 Bits */
#define ICH7_REG_OPMENU		0x58	/* 64 Bits */
Stefan Reinauer's avatar
Stefan Reinauer committed
171

172
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
173
static int ichspi_lock = 0;
174

175
static enum ich_chipset ich_generation = CHIPSET_ICH_UNKNOWN;
176 177
uint32_t ichspi_bbar = 0;

178
static void *ich_spibar = NULL;
179

180 181 182 183 184 185
typedef struct _OPCODE {
	uint8_t opcode;		//This commands spi opcode
	uint8_t spi_type;	//This commands spi type
	uint8_t atomic;		//Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;

186
/* Suggested opcode definition:
187 188 189 190 191 192 193 194 195
 * Preop 1: Write Enable
 * Preop 2: Write Status register enable
 *
 * OP 0: Write address
 * OP 1: Read Address
 * OP 2: ERASE block
 * OP 3: Read Status register
 * OP 4: Read ID
 * OP 5: Write Status register
196
 * OP 6: chip private (read JEDEC id)
197 198 199 200 201 202 203
 * OP 7: Chip erase
 */
typedef struct _OPCODES {
	uint8_t preop[2];
	OPCODE opcode[8];
} OPCODES;

204
static OPCODES *curopcodes = NULL;
205 206

/* HW access functions */
207
static uint32_t REGREAD32(int X)
208
{
209
	return mmio_readl(ich_spibar + X);
Stefan Reinauer's avatar
Stefan Reinauer committed
210 211
}

212
static uint16_t REGREAD16(int X)
Stefan Reinauer's avatar
Stefan Reinauer committed
213
{
214
	return mmio_readw(ich_spibar + X);
215 216
}

217 218 219 220 221
static uint16_t REGREAD8(int X)
{
	return mmio_readb(ich_spibar + X);
}

222 223 224
#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
#define REGWRITE8(off, val)  mmio_writeb(val, ich_spibar+(off))
225 226

/* Common SPI functions */
227 228
static int find_opcode(OPCODES *op, uint8_t opcode);
static int find_preop(OPCODES *op, uint8_t preop);
FENG yu ning's avatar
FENG yu ning committed
229
static int generate_opcodes(OPCODES * op);
230
static int program_opcodes(OPCODES *op, int enable_undo);
231
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
232
		      uint8_t datalength, uint8_t * data);
233

FENG yu ning's avatar
FENG yu ning committed
234 235 236 237 238 239
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
	uint8_t preop;
	uint8_t opcode;
};

240
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
241
const struct preop_opcode_pair pops[] = {
FENG yu ning's avatar
FENG yu ning committed
242 243 244 245 246 247
	{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
	{JEDEC_WREN, JEDEC_SE}, /* sector erase */
	{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
	{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
	{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
	{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
248 249
	 /* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
	{JEDEC_WREN, JEDEC_WRSR},
FENG yu ning's avatar
FENG yu ning committed
250 251 252 253
	{JEDEC_EWSR, JEDEC_WRSR},
	{0,}
};

254 255 256
/* Reasonable default configuration. Needs ad-hoc modifications if we
 * encounter unlisted opcodes. Fun.
 */
257
static OPCODES O_ST_M25P = {
258 259
	{
	 JEDEC_WREN,
260 261
	 JEDEC_EWSR,
	},
262
	{
263
	 {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Write Byte
264
	 {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Data
265
	 {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Erase Sector
266
	 {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read Device Status Reg
267
	 {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Electronic Manufacturer Signature
268
	 {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Write Status Register
269
	 {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read JDEC ID
270 271
	 {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Bulk erase
	}
272 273
};

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/* List of opcodes with their corresponding spi_type
 * It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
 * is needed which is currently not in the chipset OPCODE table
 */
static OPCODE POSSIBLE_OPCODES[] = {
	 {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Write Byte
	 {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Data
	 {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Erase Sector
	 {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read Device Status Reg
	 {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Electronic Manufacturer Signature
	 {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Write Status Register
	 {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read JDEC ID
	 {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Bulk erase
	 {JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Sector erase
	 {JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Block erase
	 {JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Auto Address Increment
};

292
static OPCODES O_EXISTING = {};
293

294
/* pretty printing functions */
295
static void prettyprint_opcodes(OPCODES *ops)
296 297
{
	OPCODE oc;
298 299
	const char *t;
	const char *a;
300
	uint8_t i;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	static const char *const spi_type[4] = {
		"read  w/o addr",
		"write w/o addr",
		"read  w/  addr",
		"write w/  addr"
	};
	static const char *const atomic_type[3] = {
		"none",
		" 0  ",
		" 1  "
	};

	if (ops == NULL)
		return;

	msg_pdbg2("        OP        Type      Pre-OP\n");
317 318
	for (i = 0; i < 8; i++) {
		oc = ops->opcode[i];
319 320 321
		t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
		a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
		msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
322
	}
323 324
	msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
		 ops->preop[1]);
325 326 327 328
}

#define pprint_reg(reg, bit, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & reg##_##bit)>>reg##_##bit##_OFF)

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void prettyprint_ich9_reg_hsfs(uint16_t reg_val)
{
	msg_pdbg("HSFS: ");
	pprint_reg(HSFS, FDONE, reg_val, ", ");
	pprint_reg(HSFS, FCERR, reg_val, ", ");
	pprint_reg(HSFS, AEL, reg_val, ", ");
	pprint_reg(HSFS, BERASE, reg_val, ", ");
	pprint_reg(HSFS, SCIP, reg_val, ", ");
	pprint_reg(HSFS, FDOPSS, reg_val, ", ");
	pprint_reg(HSFS, FDV, reg_val, ", ");
	pprint_reg(HSFS, FLOCKDN, reg_val, "\n");
}

static void prettyprint_ich9_reg_hsfc(uint16_t reg_val)
{
	msg_pdbg("HSFC: ");
	pprint_reg(HSFC, FGO, reg_val, ", ");
	pprint_reg(HSFC, FCYCLE, reg_val, ", ");
	pprint_reg(HSFC, FDBC, reg_val, ", ");
	pprint_reg(HSFC, SME, reg_val, "\n");
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
{
	msg_pdbg("SSFS: ");
	pprint_reg(SSFS, SCIP, reg_val, ", ");
	pprint_reg(SSFS, FDONE, reg_val, ", ");
	pprint_reg(SSFS, FCERR, reg_val, ", ");
	pprint_reg(SSFS, AEL, reg_val, "\n");
}

static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
{
	msg_pdbg("SSFC: ");
	pprint_reg(SSFC, SCGO, reg_val, ", ");
	pprint_reg(SSFC, ACS, reg_val, ", ");
	pprint_reg(SSFC, SPOP, reg_val, ", ");
	pprint_reg(SSFC, COP, reg_val, ", ");
	pprint_reg(SSFC, DBC, reg_val, ", ");
	pprint_reg(SSFC, SME, reg_val, ", ");
	pprint_reg(SSFC, SCF, reg_val, "\n");
}

372 373 374 375
static uint8_t lookup_spi_type(uint8_t opcode)
{
	int a;

376
	for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		if (POSSIBLE_OPCODES[a].opcode == opcode)
			return POSSIBLE_OPCODES[a].spi_type;
	}

	return 0xFF;
}

static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
{
	uint8_t spi_type;

	spi_type = lookup_spi_type(opcode);
	if (spi_type > 3) {
		/* Try to guess spi type from read/write sizes.
		 * The following valid writecnt/readcnt combinations exist:
		 * writecnt  = 4, readcnt >= 0
		 * writecnt  = 1, readcnt >= 0
		 * writecnt >= 4, readcnt  = 0
		 * writecnt >= 1, readcnt  = 0
		 * writecnt >= 1 is guaranteed for all commands.
		 */
		if (readcnt == 0)
			/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
			 * or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
			 * bytes are actual the address, they go to the bus anyhow
			 */
			spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
		else if (writecnt == 1) // and readcnt is > 0
			spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
		else if (writecnt == 4) // and readcnt is > 0
			spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
408 409 410 411 412 413 414 415 416 417
		else // we have an invalid case
			return SPI_INVALID_LENGTH;
	}
	int oppos = 2;	// use original JEDEC_BE_D8 offset
	curopcodes->opcode[oppos].opcode = opcode;
	curopcodes->opcode[oppos].spi_type = spi_type;
	program_opcodes(curopcodes, 0);
	oppos = find_opcode(curopcodes, opcode);
	msg_pdbg ("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
	return oppos;
418 419
}

420
static int find_opcode(OPCODES *op, uint8_t opcode)
421 422 423
{
	int a;

424 425 426 427 428
	if (op == NULL) {
		msg_perr("\n%s: null OPCODES pointer!\n", __func__);
		return -1;
	}

429 430 431 432 433 434 435 436
	for (a = 0; a < 8; a++) {
		if (op->opcode[a].opcode == opcode)
			return a;
	}

	return -1;
}

437
static int find_preop(OPCODES *op, uint8_t preop)
438 439 440
{
	int a;

441 442 443 444 445
	if (op == NULL) {
		msg_perr("\n%s: null OPCODES pointer!\n", __func__);
		return -1;
	}

446 447 448 449 450 451 452 453
	for (a = 0; a < 2; a++) {
		if (op->preop[a] == preop)
			return a;
	}

	return -1;
}

454
/* Create a struct OPCODES based on what we find in the locked down chipset. */
FENG yu ning's avatar
FENG yu ning committed
455
static int generate_opcodes(OPCODES * op)
456
{
457
	int a;
458 459 460 461
	uint16_t preop, optype;
	uint32_t opmenu[2];

	if (op == NULL) {
462
		msg_perr("\n%s: null OPCODES pointer!\n", __func__);
463 464 465
		return -1;
	}

466 467
	switch (ich_generation) {
	case CHIPSET_ICH7:
468 469 470 471 472
		preop = REGREAD16(ICH7_REG_PREOP);
		optype = REGREAD16(ICH7_REG_OPTYPE);
		opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
		opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
		break;
473 474
	case CHIPSET_ICH8:
	default:		/* Future version might behave the same */
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		preop = REGREAD16(ICH9_REG_PREOP);
		optype = REGREAD16(ICH9_REG_OPTYPE);
		opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
		opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
		break;
	}

	op->preop[0] = (uint8_t) preop;
	op->preop[1] = (uint8_t) (preop >> 8);

	for (a = 0; a < 8; a++) {
		op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
		optype >>= 2;
	}

	for (a = 0; a < 4; a++) {
		op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
		opmenu[0] >>= 8;
	}

	for (a = 4; a < 8; a++) {
		op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
		opmenu[1] >>= 8;
	}

500 501
	/* No preopcodes used by default. */
	for (a = 0; a < 8; a++)
502 503 504 505 506
		op->opcode[a].atomic = 0;

	return 0;
}

507
static int program_opcodes(OPCODES *op, int enable_undo)
508 509
{
	uint8_t a;
510 511
	uint16_t preop, optype;
	uint32_t opmenu[2];
512 513 514

	/* Program Prefix Opcodes */
	/* 0:7 Prefix Opcode 1 */
515
	preop = (op->preop[0]);
516
	/* 8:16 Prefix Opcode 2 */
517
	preop |= ((uint16_t) op->preop[1]) << 8;
518

Stefan Reinauer's avatar
Stefan Reinauer committed
519
	/* Program Opcode Types 0 - 7 */
520
	optype = 0;
521
	for (a = 0; a < 8; a++) {
522
		optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
523
	}
524

Stefan Reinauer's avatar
Stefan Reinauer committed
525
	/* Program Allowable Opcodes 0 - 3 */
526
	opmenu[0] = 0;
527
	for (a = 0; a < 4; a++) {
528
		opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
Stefan Reinauer's avatar
Stefan Reinauer committed
529 530
	}

531
	/*Program Allowable Opcodes 4 - 7 */
532
	opmenu[1] = 0;
533
	for (a = 4; a < 8; a++) {
534
		opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
Stefan Reinauer's avatar
Stefan Reinauer committed
535 536
	}

537
	msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
538 539
	switch (ich_generation) {
	case CHIPSET_ICH7:
540 541 542 543 544 545 546 547 548 549 550
		/* Register undo only for enable_undo=1, i.e. first call. */
		if (enable_undo) {
			rmmio_valw(ich_spibar + ICH7_REG_PREOP);
			rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
			rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
			rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
		}
		mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
		mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
		mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
		mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
551
		break;
552 553
	case CHIPSET_ICH8:
	default:		/* Future version might behave the same */
554 555 556 557 558 559 560 561 562 563 564
		/* Register undo only for enable_undo=1, i.e. first call. */
		if (enable_undo) {
			rmmio_valw(ich_spibar + ICH9_REG_PREOP);
			rmmio_valw(ich_spibar + ICH9_REG_OPTYPE);
			rmmio_vall(ich_spibar + ICH9_REG_OPMENU);
			rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4);
		}
		mmio_writew(preop, ich_spibar + ICH9_REG_PREOP);
		mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE);
		mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU);
		mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4);
565
		break;
Stefan Reinauer's avatar
Stefan Reinauer committed
566 567 568 569 570
	}

	return 0;
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise.
 * FIXME: this should also check for
 *   - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?)
 *   - at least one erasing opcode (lots.)
 *   - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?)
 *   - necessary preops? (EWSR, WREN, ...?)
 */
static int ich_missing_opcodes()
{
	uint8_t ops[] = {
		JEDEC_READ,
		JEDEC_RDSR,
		0
	};
	int i = 0;
	while (ops[i] != 0) {
		msg_pspew("checking for opcode 0x%02x\n", ops[i]);
		if (find_opcode(curopcodes, ops[i]) == -1)
			return -1;
		i++;
	}
	return 0;
}

596 597 598 599
/*
 * Try to set BBAR (BIOS Base Address Register), but read back the value in case
 * it didn't stick.
 */
600
static void ich_set_bbar(uint32_t min_addr)
601
{
602
	int bbar_off;
603
	switch (ich_generation) {
604
	case CHIPSET_ICH7:
605
		bbar_off = 0x50;
606
		break;
607
	case CHIPSET_ICH8:
608 609
		msg_perr("BBAR offset is unknown on ICH8!\n");
		return;
610
	case CHIPSET_ICH9:
611
	default:		/* Future version might behave the same */
612
		bbar_off = ICH9_REG_BBAR;
613
		break;
614 615 616 617 618 619
	}
	
	ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
	if (ichspi_bbar) {
		msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n",
			 ichspi_bbar);
620
	}
621 622 623 624 625 626 627 628 629
	min_addr &= BBAR_MASK;
	ichspi_bbar |= min_addr;
	rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
	ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;

	/* We don't have any option except complaining. And if the write
	 * failed, the restore will fail as well, so no problem there.
	 */
	if (ichspi_bbar != min_addr)
630 631
		msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n",
			 min_addr, ichspi_bbar);
632 633
}

634 635
/* Read len bytes from the fdata/spid register into the data array.
 *
636
 * Note that using len > flash->pgm->spi.max_data_read will return garbage or
637 638
 * may even crash.
 */
639
static void ich_read_data(uint8_t *data, int len, int reg0_off)
640 641 642 643 644 645 646 647 648 649 650 651 652 653
 {
	int i;
	uint32_t temp32 = 0;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = REGREAD32(reg0_off + i);

		data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
	}
}

/* Fill len bytes from the data array into the fdata/spid registers.
 *
654
 * Note that using len > flash->pgm->spi.max_data_write will trash the registers
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 * following the data registers.
 */
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
{
	uint32_t temp32 = 0;
	int i;

	if (len <= 0)
		return;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = 0;

		temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);

		if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
			REGWRITE32(reg0_off + (i - (i % 4)), temp32);
	}
	i--;
	if ((i % 4) != 3) /* Write remaining data to regs. */
		REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}

FENG yu ning's avatar
FENG yu ning committed
679 680
/* This function generates OPCODES from or programs OPCODES to ICH according to
 * the chipset's SPI configuration lock.
681
 *
FENG yu ning's avatar
FENG yu ning committed
682
 * It should be called before ICH sends any spi command.
683
 */
684
static int ich_init_opcodes(void)
685 686 687 688 689 690 691 692
{
	int rc = 0;
	OPCODES *curopcodes_done;

	if (curopcodes)
		return 0;

	if (ichspi_lock) {
693
		msg_pdbg("Reading OPCODES... ");
694
		curopcodes_done = &O_EXISTING;
FENG yu ning's avatar
FENG yu ning committed
695
		rc = generate_opcodes(curopcodes_done);
696
	} else {
697
		msg_pdbg("Programming OPCODES... ");
698
		curopcodes_done = &O_ST_M25P;
699
		rc = program_opcodes(curopcodes_done, 1);
700 701 702 703
	}

	if (rc) {
		curopcodes = NULL;
704
		msg_perr("failed\n");
705 706 707
		return 1;
	} else {
		curopcodes = curopcodes_done;
708
		msg_pdbg("done\n");
709
		prettyprint_opcodes(curopcodes);
710 711 712 713
		return 0;
	}
}

714
static int ich7_run_opcode(OPCODE op, uint32_t offset,
715
			   uint8_t datalength, uint8_t * data, int maxdata)
Stefan Reinauer's avatar
Stefan Reinauer committed
716 717 718
{
	int write_cmd = 0;
	int timeout;
719
	uint32_t temp32;
Stefan Reinauer's avatar
Stefan Reinauer committed
720
	uint16_t temp16;
721 722
	uint64_t opmenu;
	int opcode_index;
Stefan Reinauer's avatar
Stefan Reinauer committed
723 724 725 726 727 728 729

	/* Is it a write command? */
	if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
	    || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
		write_cmd = 1;
	}

730 731 732 733 734 735 736 737 738
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
		programmer_delay(10);
	}
	if (!timeout) {
		msg_perr("Error: SCIP never cleared!\n");
		return 1;
	}

739 740 741
	/* Program offset in flash into SPIA while preserving reserved bits. */
	temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
	REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
Stefan Reinauer's avatar
Stefan Reinauer committed
742

743
	/* Program data into SPID0 to N */
744 745
	if (write_cmd && (datalength != 0))
		ich_fill_data(data, datalength, ICH7_REG_SPID0);
Stefan Reinauer's avatar
Stefan Reinauer committed
746 747

	/* Assemble SPIS */
748 749 750
	temp16 = REGREAD16(ICH7_REG_SPIS);
	/* keep reserved bits */
	temp16 &= SPIS_RESERVED_MASK;
Stefan Reinauer's avatar
Stefan Reinauer committed
751
	/* clear error status registers */
752
	temp16 |= (SPIS_CDS | SPIS_FCERR);
Stefan Reinauer's avatar
Stefan Reinauer committed
753 754 755 756 757 758 759
	REGWRITE16(ICH7_REG_SPIS, temp16);

	/* Assemble SPIC */
	temp16 = 0;

	if (datalength != 0) {
		temp16 |= SPIC_DS;
760
		temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
Stefan Reinauer's avatar
Stefan Reinauer committed
761 762 763
	}

	/* Select opcode */
764 765 766
	opmenu = REGREAD32(ICH7_REG_OPMENU);
	opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;

767 768
	for (opcode_index = 0; opcode_index < 8; opcode_index++) {
		if ((opmenu & 0xff) == op.opcode) {
769 770 771 772 773
			break;
		}
		opmenu >>= 8;
	}
	if (opcode_index == 8) {
774
		msg_pdbg("Opcode %x not found.\n", op.opcode);
775 776 777
		return 1;
	}
	temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
Stefan Reinauer's avatar
Stefan Reinauer committed
778

779 780 781 782 783 784 785
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	/* Handle Atomic. Atomic commands include three steps:
	    - sending the preop (mainly EWSR or WREN)
	    - sending the main command
	    - waiting for the busy bit (WIP) to be cleared
	   This means the timeout must be sufficient for chip erase
	   of slow high-capacity chips.
786
	 */
787 788 789 790 791 792 793
	switch (op.atomic) {
	case 2:
		/* Select second preop. */
		temp16 |= SPIC_SPOP;
		/* And fall through. */
	case 1:
		/* Atomic command (preop+op) */
Stefan Reinauer's avatar
Stefan Reinauer committed
794
		temp16 |= SPIC_ACS;
795
		timeout = 100 * 1000 * 60;	/* 60 seconds */
796
		break;
Stefan Reinauer's avatar
Stefan Reinauer committed
797 798 799 800 801 802 803 804
	}

	/* Start */
	temp16 |= SPIC_SCGO;

	/* write it */
	REGWRITE16(ICH7_REG_SPIC, temp16);

805 806 807
	/* Wait for Cycle Done Status or Flash Cycle Error. */
	while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
	       --timeout) {
808
		programmer_delay(10);
Stefan Reinauer's avatar
Stefan Reinauer committed
809 810
	}
	if (!timeout) {
811 812 813
		msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n",
			 REGREAD16(ICH7_REG_SPIS));
		return 1;
Stefan Reinauer's avatar
Stefan Reinauer committed
814 815
	}

816
	/* FIXME: make sure we do not needlessly cause transaction errors. */
817 818
	temp16 = REGREAD16(ICH7_REG_SPIS);
	if (temp16 & SPIS_FCERR) {
819
		msg_perr("Transaction error!\n");
820 821 822
		/* keep reserved bits */
		temp16 &= SPIS_RESERVED_MASK;
		REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
Stefan Reinauer's avatar
Stefan Reinauer committed
823 824 825
		return 1;
	}

826 827
	if ((!write_cmd) && (datalength != 0))
		ich_read_data(data, datalength, ICH7_REG_SPID0);
828 829 830 831

	return 0;
}

832
static int ich9_run_opcode(OPCODE op, uint32_t offset,
Stefan Reinauer's avatar
Stefan Reinauer committed
833
			   uint8_t datalength, uint8_t * data)
834 835
{
	int write_cmd = 0;
836
	int timeout;
837
	uint32_t temp32;
838 839
	uint64_t opmenu;
	int opcode_index;
840 841 842 843 844 845 846

	/* Is it a write command? */
	if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
	    || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
		write_cmd = 1;
	}

847 848 849 850 851 852 853 854 855
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) {
		programmer_delay(10);
	}
	if (!timeout) {
		msg_perr("Error: SCIP never cleared!\n");
		return 1;
	}

856 857 858 859
	/* Program offset in flash into FADDR while preserve the reserved bits
	 * and clearing the 25. address bit which is only useable in hwseq. */
	temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
	REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);
860 861

	/* Program data into FDATA0 to N */
862 863
	if (write_cmd && (datalength != 0))
		ich_fill_data(data, datalength, ICH9_REG_FDATA0);
864 865

	/* Assemble SSFS + SSFC */
866
	temp32 = REGREAD32(ICH9_REG_SSFS);
867
	/* Keep reserved bits only */
868
	temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
869 870
	/* Clear cycle done and cycle error status registers */
	temp32 |= (SSFS_FDONE | SSFS_FCERR);
871 872
	REGWRITE32(ICH9_REG_SSFS, temp32);

873
	/* Use 20 MHz */
874 875
	temp32 |= SSFC_SCF_20MHZ;

876
	/* Set data byte count (DBC) and data cycle bit (DS) */
877 878 879
	if (datalength != 0) {
		uint32_t datatemp;
		temp32 |= SSFC_DS;
880 881
		datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) &
			    SSFC_DBC);
882 883 884 885
		temp32 |= datatemp;
	}

	/* Select opcode */
886 887 888
	opmenu = REGREAD32(ICH9_REG_OPMENU);
	opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;

889 890
	for (opcode_index = 0; opcode_index < 8; opcode_index++) {
		if ((opmenu & 0xff) == op.opcode) {
891 892 893 894 895
			break;
		}
		opmenu >>= 8;
	}
	if (opcode_index == 8) {
896
		msg_pdbg("Opcode %x not found.\n", op.opcode);
897 898 899
		return 1;
	}
	temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
900

901 902 903 904 905 906 907
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	/* Handle Atomic. Atomic commands include three steps:
	    - sending the preop (mainly EWSR or WREN)
	    - sending the main command
	    - waiting for the busy bit (WIP) to be cleared
	   This means the timeout must be sufficient for chip erase
	   of slow high-capacity chips.
908
	 */
909 910 911 912 913 914 915
	switch (op.atomic) {
	case 2:
		/* Select second preop. */
		temp32 |= SSFC_SPOP;
		/* And fall through. */
	case 1:
		/* Atomic command (preop+op) */
916
		temp32 |= SSFC_ACS;
917
		timeout = 100 * 1000 * 60;	/* 60 seconds */
918
		break;
919 920 921 922 923 924
	}

	/* Start */
	temp32 |= SSFC_SCGO;

	/* write it */
Stefan Reinauer's avatar
Stefan Reinauer committed
925
	REGWRITE32(ICH9_REG_SSFS, temp32);
926

927
	/* Wait for Cycle Done Status or Flash Cycle Error. */
928
	while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
929
	       --timeout) {
930
		programmer_delay(10);
931 932
	}
	if (!timeout) {
933 934 935
		msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n",
			 REGREAD32(ICH9_REG_SSFS));
		return 1;
936 937
	}

938
	/* FIXME make sure we do not needlessly cause transaction errors. */
939 940
	temp32 = REGREAD32(ICH9_REG_SSFS);
	if (temp32 & SSFS_FCERR) {
941
		msg_perr("Transaction error!\n");
942 943
		prettyprint_ich9_reg_ssfs(temp32);
		prettyprint_ich9_reg_ssfc(temp32);
944 945 946 947
		/* keep reserved bits */
		temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
		/* Clear the transaction error. */
		REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR);
948 949 950
		return 1;
	}

951 952
	if ((!write_cmd) && (datalength != 0))
		ich_read_data(data, datalength, ICH9_REG_FDATA0);
953 954 955 956

	return 0;
}

957
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
Stefan Reinauer's avatar
Stefan Reinauer committed
958 959
		      uint8_t datalength, uint8_t * data)
{
960
	/* max_data_read == max_data_write for all Intel/VIA SPI masters */
961
	uint8_t maxlength = flash->pgm->spi.max_data_read;
962

963
	if (ich_generation == CHIPSET_ICH_UNKNOWN) {
964 965 966 967 968 969 970 971 972 973 974
		msg_perr("%s: unsupported chipset\n", __func__);
		return -1;
	}

	if (datalength > maxlength) {
		msg_perr("%s: Internal command size error for "
			"opcode 0x%02x, got datalength=%i, want <=%i\n",
			__func__, op.opcode, datalength, maxlength);
		return SPI_INVALID_LENGTH;
	}

975 976
	switch (ich_generation) {
	case CHIPSET_ICH7:
977
		return ich7_run_opcode(op, offset, datalength, data, maxlength);
978 979
	case CHIPSET_ICH8:
	default:		/* Future version might behave the same */
980
		return ich9_run_opcode(op, offset, datalength, data);
981
	}
Stefan Reinauer's avatar
Stefan Reinauer committed
982 983
}

984 985 986 987
static int ich_spi_send_command(struct flashctx *flash, unsigned int writecnt,
				unsigned int readcnt,
				const unsigned char *writearr,
				unsigned char *readarr)
988
{
989
	int result;
990 991 992 993 994 995 996 997
	int opcode_index = -1;
	const unsigned char cmd = *writearr;
	OPCODE *opcode;
	uint32_t addr = 0;
	uint8_t *data;
	int count;

	/* find cmd in opcodes-table */
998
	opcode_index = find_opcode(curopcodes, cmd);
999
	if (opcode_index == -1) {
1000 1001
		if (!ichspi_lock)
			opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
1002 1003 1004 1005
		if (opcode_index == SPI_INVALID_LENGTH) {
			msg_pdbg("OPCODE 0x%02x has unsupported length, will not execute.\n", cmd);
			return SPI_INVALID_LENGTH;
		} else if (opcode_index == -1) {
Stefan Tauner's avatar
Stefan Tauner committed
1006 1007
			msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n",
				 cmd);
1008 1009
			return SPI_INVALID_OPCODE;
		}
1010 1011 1012 1013
	}

	opcode = &(curopcodes->opcode[opcode_index]);

1014 1015 1016 1017 1018 1019 1020 1021 1022
	/* The following valid writecnt/readcnt combinations exist:
	 * writecnt  = 4, readcnt >= 0
	 * writecnt  = 1, readcnt >= 0
	 * writecnt >= 4, readcnt  = 0
	 * writecnt >= 1, readcnt  = 0
	 * writecnt >= 1 is guaranteed for all commands.
	 */
	if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
	    (writecnt != 4)) {
1023
		msg_perr("%s: Internal command size error for opcode "
1024 1025 1026 1027 1028 1029
			"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
			writecnt);
		return SPI_INVALID_LENGTH;
	}
	if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
	    (writecnt != 1)) {
1030
		msg_perr("%s: Internal command size error for opcode "
1031 1032 1033 1034 1035 1036
			"0x%02x, got writecnt=%i, want =1\n", __func__, cmd,
			writecnt);
		return SPI_INVALID_LENGTH;
	}
	if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
	    (writecnt < 4)) {
1037
		msg_perr("%s: Internal command size error for opcode "
1038 1039 1040 1041 1042 1043 1044
			"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd,
			writecnt);
		return SPI_INVALID_LENGTH;
	}
	if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
	     (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
	    (readcnt)) {
1045
		msg_perr("%s: Internal command size error for opcode "
1046 1047 1048 1049 1050
			"0x%02x, got readcnt=%i, want =0\n", __func__, cmd,
			readcnt);
		return SPI_INVALID_LENGTH;
	}

1051 1052 1053
	/* if opcode-type requires an address */
	if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
	    opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
1054 1055
		addr = (writearr[1] << 16) |
		    (writearr[2] << 8) | (writearr[3] << 0);
1056 1057 1058 1059 1060
		if (addr < ichspi_bbar) {
			msg_perr("%s: Address 0x%06x below allowed "
				 "range 0x%06x-0xffffff\n", __func__,
				 addr, ichspi_bbar);
			return SPI_INVALID_ADDRESS;
1061
		}
1062
	}
1063

1064 1065 1066 1067 1068 1069 1070
	/* Translate read/write array/count.
	 * The maximum data length is identical for the maximum read length and
	 * for the maximum write length excluding opcode and address. Opcode and
	 * address are stored in separate registers, not in the data registers
	 * and are thus not counted towards data length. The only exception
	 * applies if the opcode definition (un)intentionally classifies said
	 * opcode incorrectly as non-address opcode or vice versa. */
1071
	if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
1072 1073 1074 1075 1076 1077 1078
		data = (uint8_t *) (writearr + 1);
		count = writecnt - 1;
	} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
		data = (uint8_t *) (writearr + 4);
		count = writecnt - 4;
	} else {
		data = (uint8_t *) readarr;
1079 1080
		count = readcnt;
	}
1081

1082
	result = run_opcode(flash, *opcode, addr, count, data);
1083
	if (result) {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
		if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
		    (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
			msg_pdbg("at address 0x%06x ", addr);
		}
		msg_pdbg("(payload length was %d).\n", count);

		/* Print out the data array if it contains data to write.
		 * Errors are detected before the received data is read back into
		 * the array so it won't make sense to print it then. */
		if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
		    (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
			int i;
			msg_pspew("The data was:\n");
1098
			for (i = 0; i < count; i++){
1099 1100 1101
				msg_pspew("%3d: 0x%02x\n", i, data[i]);
			}
		}
1102 1103
	}

1104
	return result;
1105
}
1106

1107 1108 1109 1110 1111
static struct hwseq_data {
	uint32_t size_comp0;
	uint32_t size_comp1;
} hwseq_data;

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
	uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
	REGWRITE32(ICH9_REG_FADDR, (addr & 0x01FFFFFF) | addr_old);
}

/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
 * of the block containing this address. May return nonsense if the address is
 * not valid. The erase block size for a specific address depends on the flash
 * partition layout as specified by FPB and the partition properties as defined
 * by UVSCC and LVSCC respectively. An alternative to implement this method
 * would be by querying FPB and the respective VSCC register directly.
 */
static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr)
{
	uint8_t enc_berase;
	static const uint32_t const dec_berase[4] = {
		256,
		4 * 1024,
		8 * 1024,
		64 * 1024
	};

	ich_hwseq_set_addr(addr);
	enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >>
		     HSFS_BERASE_OFF;
	return dec_berase[enc_berase];
}

/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
   Resets all error flags in HSFS.
   Returns 0 if the cycle completes successfully without errors within
   timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
					     unsigned int len)
{
	uint16_t hsfs;
	uint32_t addr;

	timeout /= 8; /* scale timeout duration to counter */
	while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) &
		 (HSFS_FDONE | HSFS_FCERR)) == 0) &&
	       --timeout) {
		programmer_delay(8);
	}
	REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
	if (!timeout) {
		addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
		msg_perr("Timeout error between offset 0x%08x and "
1162 1163
			 "0x%08x (= 0x%08x + %d)!\n",
			 addr, addr + len - 1, addr, len - 1);
1164 1165 1166 1167 1168 1169 1170 1171
		prettyprint_ich9_reg_hsfs(hsfs);
		prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
		return 1;
	}

	if (hsfs & HSFS_FCERR) {
		addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
		msg_perr("Transaction error between offset 0x%08x and "
1172
			 "0x%08x (= 0x%08x + %d)!\n",
1173 1174 1175 1176 1177 1178 1179
			 addr, addr + len - 1, addr, len - 1);
		prettyprint_ich9_reg_hsfs(hsfs);
		prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
		return 1;
	}
	return 0;
}
1180

1181
static int ich_hwseq_probe(struct flashctx *flash)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	uint32_t total_size, boundary;
	uint32_t erase_size_low, size_low, erase_size_high, size_high;
	struct block_eraser *eraser;

	total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1;
	msg_cdbg("Found %d attached SPI flash chip",
		 (hwseq_data.size_comp1 != 0) ? 2 : 1);
	if (hwseq_data.size_comp1 != 0)
		msg_cdbg("s with a combined");
	else
		msg_cdbg(" with a");
	msg_cdbg(" density of %d kB.\n", total_size / 1024);
	flash->total_size = total_size / 1024;

	eraser = &(flash->block_erasers[0]);
	boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12;
	size_high = total_size - boundary;
	erase_size_high = ich_hwseq_get_erase_block_size(boundary);

	if (boundary == 0) {
		msg_cdbg("There is only one partition containing the whole "
			 "address space (0x%06x - 0x%06x).\n", 0, size_high-1);
		eraser->eraseblocks[0].size = erase_size_high;
		eraser->eraseblocks[0].count = size_high / erase_size_high;
		msg_cdbg("There are %d erase blocks with %d B each.\n",
			 size_high / erase_size_high, erase_size_high);
	} else {
		msg_cdbg("The flash address space (0x%06x - 0x%06x) is divided "
			 "at address 0x%06x in two partitions.\n",
			 0, size_high-1, boundary);
		size_low = total_size - size_high;
		erase_size_low = ich_hwseq_get_erase_block_size(0);

		eraser->eraseblocks[0].size = erase_size_low;
		eraser->eraseblocks[0].count = size_low / erase_size_low;
		msg_cdbg("The first partition ranges from 0x%06x to 0x%06x.\n",
			 0, size_low-1);
		msg_cdbg("In that range are %d erase blocks with %d B each.\n",
			 size_low / erase_size_low, erase_size_low);

		eraser->eraseblocks[1].size = erase_size_high;
		eraser->eraseblocks[1].count = size_high / erase_size_high;
		msg_cdbg("The second partition ranges from 0x%06x to 0x%06x.\n",
			 boundary, size_high-1);
		msg_cdbg("In that range are %d erase blocks with %d B each.\n",
			 size_high / erase_size_high, erase_size_high);
	}
	flash->tested = TEST_OK_PREW;
	return 1;
}

1234 1235
static int ich_hwseq_block_erase(struct flashctx *flash, unsigned int addr,
				 unsigned int len)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	uint32_t erase_block;
	uint16_t hsfc;
	uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */

	erase_block = ich_hwseq_get_erase_block_size(addr);
	if (len != erase_block) {
		msg_cerr("Erase block size for address 0x%06x is %d B, "
			 "but requested erase block size is %d B. "
			 "Not erasing anything.\n", addr, erase_block, len);
		return -1;
	}

	/* Although the hardware supports this (it would erase the whole block
	 * containing the address) we play safe here. */
	if (addr % erase_block != 0) {
		msg_cerr("Erase address 0x%06x is not aligned to the erase "
			 "block boundary (any multiple of %d). "
			 "Not erasing anything.\n", addr, erase_block);
		return -1;
	}

	if (addr + len > flash->total_size * 1024) {
		msg_perr("Request to erase some inaccessible memory address(es)"
			 " (addr=0x%x, len=%d). "
			 "Not erasing anything.\n", addr, len);
		return -1;
	}

	msg_pdbg("Erasing %d bytes starting at 0x%06x.\n", len, addr);

	/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
	REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));

	hsfc = REGREAD16(ICH9_REG_HSFC);
	hsfc &= ~HSFC_FCYCLE; /* clear operation */
	hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
	hsfc |= HSFC_FGO; /* start */
	msg_pdbg("HSFC used for block erasing: ");
	prettyprint_ich9_reg_hsfc(hsfc);
	REGWRITE16(ICH9_REG_HSFC, hsfc);

	if (ich_hwseq_wait_for_cycle_complete(timeout, len))
		return -1;
	return 0;
}

1283 1284
static int ich_hwseq_read(struct flashctx *flash, uint8_t *buf,
			  unsigned int addr, unsigned int len)
1285 1286 1287 1288 1289
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;

1290
	if (addr + len > flash->total_size * 1024) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		msg_perr("Request to read from an inaccessible memory address "
			 "(addr=0x%x, len=%d).\n", addr, len);
		return -1;
	}

	msg_pdbg("Reading %d bytes starting at 0x%06x.\n", len, addr);
	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));

	while (len > 0) {
1301
		block_len = min(len, flash->pgm->opaque.max_data_read);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		ich_hwseq_set_addr(addr);
		hsfc = REGREAD16(ICH9_REG_HSFC);
		hsfc &= ~HSFC_FCYCLE; /* set read operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		REGWRITE16(ICH9_REG_HSFC, hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
			return 1;
		ich_read_data(buf, block_len, ICH9_REG_FDATA0);
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	return 0;
}

1321 1322
static int ich_hwseq_write(struct flashctx *flash, uint8_t *buf,
			   unsigned int addr, unsigned int len)
1323 1324 1325 1326 1327
{
	uint16_t hsfc;
	uint16_t timeout = 100 * 60;
	uint8_t block_len;

1328
	if (addr + len > flash->total_size * 1024) {
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		msg_perr("Request to write to an inaccessible memory address "
			 "(addr=0x%x, len=%d).\n", addr, len);
		return -1;
	}

	msg_pdbg("Writing %d bytes starting at 0x%06x.\n", len, addr);
	/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
	REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));

	while (len > 0) {
		ich_hwseq_set_addr(addr);
1340
		block_len = min(len, flash->pgm->opaque.max_data_write);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		ich_fill_data(buf, block_len, ICH9_REG_FDATA0);
		hsfc = REGREAD16(ICH9_REG_HSFC);
		hsfc &= ~HSFC_FCYCLE; /* clear operation */
		hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
		hsfc &= ~HSFC_FDBC; /* clear byte count */
		/* set byte count */
		hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
		hsfc |= HSFC_FGO; /* start */
		REGWRITE16(ICH9_REG_HSFC, hsfc);

		if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
			return -1;
		addr += block_len;
		buf += block_len;
		len -= block_len;
	}
	return 0;
}
1359

1360 1361
static int ich_spi_send_multicommand(struct flashctx *flash,
				     struct spi_command *cmds)
1362 1363
{
	int ret = 0;
1364
	int i;
1365 1366 1367
	int oppos, preoppos;
	for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
		if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
1368
			/* Next command is valid. */
1369 1370
			preoppos = find_preop(curopcodes, cmds->writearr[0]);
			oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
1371 1372 1373 1374 1375 1376 1377 1378 1379
			if ((oppos == -1) && (preoppos != -1)) {
				/* Current command is listed as preopcode in
				 * ICH struct OPCODES, but next command is not
				 * listed as opcode in that struct.
				 * Check for command sanity, then
				 * try to reprogram the ICH opcode list.
				 */
				if (find_preop(curopcodes,
					       (cmds + 1)->writearr[0]) != -1) {
1380
					msg_perr("%s: Two subsequent "
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
						"preopcodes 0x%02x and 0x%02x, "
						"ignoring the first.\n",
						__func__, cmds->writearr[0],
						(cmds + 1)->writearr[0]);
					continue;
				}
				/* If the chipset is locked down, we'll fail
				 * during execution of the next command anyway.
				 * No need to bother with fixups.
				 */
				if (!ichspi_lock) {
1392 1393 1394 1395
					oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
					if (oppos == -1)
						continue;
					curopcodes->opcode[oppos].atomic = preoppos + 1;
1396 1397 1398 1399 1400 1401 1402 1403 1404
					continue;
				}
			}
			if ((oppos != -1) && (preoppos != -1)) {
				/* Current command is listed as preopcode in
				 * ICH struct OPCODES and next command is listed
				 * as opcode in that struct. Match them up.
				 */
				curopcodes->opcode[oppos].atomic = preoppos + 1;
1405
				continue;
1406 1407 1408 1409 1410
			}
			/* If none of the above if-statements about oppos or
			 * preoppos matched, this is a normal opcode.
			 */
		}
1411
		ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt,
1412
					   cmds->writearr, cmds->readarr);
1413 1414 1415
		/* Reset the type of all opcodes to non-atomic. */
		for (i = 0; i < 8; i++)
			curopcodes->opcode[i].atomic = 0;
1416 1417 1418
	}
	return ret;
}
1419

1420 1421 1422 1423 1424
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
#define ICH_BRWA(x)  ((x >>  8) & 0xff)
#define ICH_BRRA(x)  ((x >>  0) & 0xff)

1425 1426
/* returns 0 if region is unused or r/w */
static int ich9_handle_frap(uint32_t frap, int i)
1427
{
1428
	static const char *const access_names[4] = {
1429 1430
		"locked", "read-only", "write-only", "read-write"
	};
1431
	static const char *const region_names[5] = {
1432 1433 1434 1435 1436 1437
		"Flash Descriptor", "BIOS", "Management Engine",
		"Gigabit Ethernet", "Platform Data"
	};
	uint32_t base, limit;
	int rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) |
		      (((ICH_BRRA(frap) >> i) & 1) << 0);
1438
	int offset = ICH9_REG_FREG0 + i * 4;
1439 1440 1441 1442
	uint32_t freg = mmio_readl(ich_spibar + offset);

	base  = ICH_FREG_BASE(freg);
	limit = ICH_FREG_LIMIT(freg);
1443
	if (base > limit) {
1444
		/* this FREG is disabled */
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		msg_pdbg2("0x%02X: 0x%08x FREG%i: %s region is unused.\n",
			  offset, freg, i, region_names[i]);
		return 0;
	}
	msg_pdbg("0x%02X: 0x%08x ", offset, freg);
	if (rwperms == 0x3) {
		msg_pdbg("FREG%i: %s region (0x%08x-0x%08x) is %s.\n", i,
			 region_names[i], base, (limit | 0x0fff),
			 access_names[rwperms]);
		return 0;
1455 1456
	}

1457 1458 1459 1460
	msg_pinfo("FREG%i: WARNING: %s region (0x%08x-0x%08x) is %s.\n", i,
		  region_names[i], base, (limit | 0x0fff),
		  access_names[rwperms]);
	return 1;
1461 1462
}

1463 1464 1465 1466 1467 1468 1469 1470 1471
	/* In contrast to FRAP and the master section of the descriptor the bits
	 * in the PR registers have an inverted meaning. The bits in FRAP
	 * indicate read and write access _grant_. Here they indicate read
	 * and write _protection_ respectively. If both bits are 0 the address
	 * bits are ignored.
	 */
#define ICH_PR_PERMS(pr)	(((~((pr) >> PR_RP_OFF) & 1) << 0) | \
				 ((~((pr) >> PR_WP_OFF) & 1) << 1))

1472 1473
/* returns 0 if range is unused (i.e. r/w) */
static int ich9_handle_pr(int i)
1474
{
1475 1476
	static const char *const access_names[3] = {
		"locked", "read-only", "write-only"
1477 1478 1479
	};
	uint8_t off = ICH9_REG_PR0 + (i * 4);
	uint32_t pr = mmio_readl(ich_spibar + off);
1480
	unsigned int rwperms = ICH_PR_PERMS(pr);
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (rwperms == 0x3) {
		msg_pdbg2("0x%02X: 0x%08x (PR%u is unused)\n", off, pr, i);
		return 0;
	}

	msg_pdbg("0x%02X: 0x%08x ", off, pr);
	msg_pinfo("PR%u: WARNING: 0x%08x-0x%08x is %s.\n", i, ICH_FREG_BASE(pr),
		  ICH_FREG_LIMIT(pr) | 0x0fff, access_names[rwperms]);
	return 1;
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/* Set/Clear the read and write protection enable bits of PR register @i
 * according to @read_prot and @write_prot. */
static void ich9_set_pr(int i, int read_prot, int write_prot)
{
	void *addr = ich_spibar + ICH9_REG_PR0 + (i * 4);
	uint32_t old = mmio_readl(addr);
	uint32_t new;

	msg_gspew("PR%u is 0x%08x", i, old);
	new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF));
	if (read_prot)
		new |= (1 << PR_RP_OFF);
	if (write_prot)
		new |= (1 << PR_WP_OFF);
	if (old == new) {
		msg_gspew(" already.\n");
		return;
	}
	msg_gspew(", trying to set it to 0x%08x ", new);
	rmmio_writel(new, addr);
	msg_gspew("resulted in 0x%08x.\n", mmio_readl(addr));
}

1516 1517 1518 1519 1520 1521 1522 1523
static const struct spi_programmer spi_programmer_ich7 = {
	.type = SPI_CONTROLLER_ICH7,
	.max_data_read = 64,
	.max_data_write = 64,
	.command = ich_spi_send_command,
	.multicommand = ich_spi_send_multicommand,
	.read = default_spi_read,
	.write_256 = default_spi_write_256,
1524
	.write_aai = default_spi_write_aai,
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
};

static const struct spi_programmer spi_programmer_ich9 = {
	.type = SPI_CONTROLLER_ICH9,
	.max_data_read = 64,
	.max_data_write = 64,
	.command = ich_spi_send_command,
	.multicommand = ich_spi_send_multicommand,
	.read = default_spi_read,
	.write_256 = default_spi_write_256,
1535
	.write_aai = default_spi_write_aai,
1536 1537
};

1538 1539 1540 1541 1542 1543 1544 1545 1546
static const struct opaque_programmer opaque_programmer_ich_hwseq = {
	.max_data_read = 64,
	.max_data_write = 64,
	.probe = ich_hwseq_probe,
	.read = ich_hwseq_read,
	.write = ich_hwseq_write,
	.erase = ich_hwseq_block_erase,
};

1547
int ich_init_spi(struct pci_dev *dev, uint32_t base, void *rcrb,
1548
		 enum ich_chipset ich_gen)
1549 1550 1551 1552 1553
{
	int i;
	uint8_t old, new;
	uint16_t spibar_offset, tmp2;
	uint32_t tmp;
1554
	char *arg;
1555 1556
	int ich_spi_force = 0;
	int ich_spi_rw_restricted = 0;
1557
	int desc_valid = 0;
1558 1559 1560 1561 1562 1563
	struct ich_descriptors desc = {{ 0 }};
	enum ich_spi_mode {
		ich_auto,
		ich_hwseq,
		ich_swseq
	} ich_spi_mode = ich_auto;
1564

1565 1566
	ich_generation = ich_gen;

1567
	switch (ich_generation) {
1568
	case CHIPSET_ICH_UNKNOWN:
1569
		return ERROR_FATAL;
1570 1571
	case CHIPSET_ICH7:
	case CHIPSET_ICH8:
1572 1573
		spibar_offset = 0x3020;
		break;
1574
	case CHIPSET_ICH9:
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	default:		/* Future version might behave the same */
		spibar_offset = 0x3800;
		break;
	}

	/* SPIBAR is at RCRB+0x3020 for ICH[78] and RCRB+0x3800 for ICH9. */
	msg_pdbg("SPIBAR = 0x%x + 0x%04x\n", base, spibar_offset);

	/* Assign Virtual Address */
	ich_spibar = rcrb + spibar_offset;

1586
	switch (ich_generation) {
1587
	case CHIPSET_ICH7:
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		msg_pdbg("0x00: 0x%04x     (SPIS)\n",
			     mmio_readw(ich_spibar + 0));
		msg_pdbg("0x02: 0x%04x     (SPIC)\n",
			     mmio_readw(ich_spibar + 2));
		msg_pdbg("0x04: 0x%08x (SPIA)\n",
			     mmio_readl(ich_spibar + 4));
		for (i = 0; i < 8; i++) {
			int offs;
			offs = 8 + (i * 8);
			msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
				     mmio_readl(ich_spibar + offs), i);
			msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
				     mmio_readl(ich_spibar + offs + 4), i);
		}
		ichspi_bbar = mmio_readl(ich_spibar + 0x50);
		msg_pdbg("0x50: 0x%08x (BBAR)\n",
			     ichspi_bbar);
		msg_pdbg("0x54: 0x%04x     (PREOP)\n",
			     mmio_readw(ich_spibar + 0x54));
		msg_pdbg("0x56: 0x%04x     (OPTYPE)\n",
			     mmio_readw(ich_spibar + 0x56));
		msg_pdbg("0x58: 0x%08x (OPMENU)\n",
			     mmio_readl(ich_spibar + 0x58));
		msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n",
			     mmio_readl(ich_spibar + 0x5c));
1613
		for (i = 0; i < 3; i++) {
1614 1615 1616 1617 1618 1619 1620 1621 1622
			int offs;
			offs = 0x60 + (i * 4);
			msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
				     mmio_readl(ich_spibar + offs), i);
		}
		if (mmio_readw(ich_spibar) & (1 << 15)) {
			msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
			ichspi_lock = 1;
		}
1623
		ich_init_opcodes();
1624
		ich_set_bbar(0);
1625
		register_spi_programmer(&spi_programmer_ich7);
1626
		break;
1627
	case CHIPSET_ICH8:
1628
	default:		/* Future version might behave the same */
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
		arg = extract_programmer_param("ich_spi_mode");
		if (arg && !strcmp(arg, "hwseq")) {
			ich_spi_mode = ich_hwseq;
			msg_pspew("user selected hwseq\n");
		} else if (arg && !strcmp(arg, "swseq")) {
			ich_spi_mode = ich_swseq;
			msg_pspew("user selected swseq\n");
		} else if (arg && !strcmp(arg, "auto")) {
			msg_pspew("user selected auto\n");
			ich_spi_mode = ich_auto;
		} else if (arg && !strlen(arg)) {
			msg_perr("Missing argument for ich_spi_mode.\n");
			free(arg);
			return ERROR_FATAL;
		} else if (arg) {
			msg_perr("Unknown argument for ich_spi_mode: %s\n",
				 arg);
			free(arg);
			return ERROR_FATAL;
		}
		free(arg);

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		arg = extract_programmer_param("ich_spi_force");
		if (arg && !strcmp(arg, "yes")) {
			ich_spi_force = 1;
			msg_pspew("ich_spi_force enabled.\n");
		} else if (arg && !strlen(arg)) {
			msg_perr("Missing argument for ich_spi_force.\n");
			free(arg);
			return ERROR_FATAL;
		} else if (arg) {
			msg_perr("Unknown argument for ich_spi_force: \"%s\" "
				 "(not \"yes\").\n", arg);
			free(arg);
			return ERROR_FATAL;
		}
		free(arg);

1667
		tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFS);
1668
		msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
1669
		prettyprint_ich9_reg_hsfs(tmp2);
1670
		if (tmp2 & HSFS_FLOCKDN) {
1671 1672 1673
			msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
			ichspi_lock = 1;
		}
1674
		if (tmp2 & HSFS_FDV)
1675 1676
			desc_valid = 1;
		if (!(tmp2 & HSFS_FDOPSS) && desc_valid)
1677 1678 1679 1680 1681
			msg_pinfo("The Flash Descriptor Security Override "
				  "Strap-Pin is set. Restrictions implied\n"
				  "by the FRAP and FREG registers are NOT in "
				  "effect. Please note that Protected\n"
				  "Range (PR) restrictions still apply.\n");
1682
		ich_init_opcodes();
1683

1684 1685 1686 1687 1688
		if (desc_valid) {
			tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFC);
			msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2);
			prettyprint_ich9_reg_hsfc(tmp2);
		}
1689

1690 1691
		tmp = mmio_readl(ich_spibar + ICH9_REG_FADDR);
		msg_pdbg("0x08: 0x%08x (FADDR)\n", tmp);
1692

1693 1694 1695 1696 1697 1698 1699 1700
		if (desc_valid) {
			tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP);
			msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp);
			msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
			msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
			msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
			msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));

1701
			/* Handle FREGx and FRAP registers */
1702
			for (i = 0; i < 5; i++)
1703
				ich_spi_rw_restricted |= ich9_handle_frap(tmp, i);
1704
		}
1705

1706 1707 1708
		for (i = 0; i < 5; i++) {
			/* if not locked down try to disable PR locks first */
			if (!ichspi_lock)
1709
				ich9_set_pr(i, 0, 0);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
			ich_spi_rw_restricted |= ich9_handle_pr(i);
		}

		if (ich_spi_rw_restricted) {
			msg_pinfo("Please send a verbose log to "
				  "flashrom@flashrom.org if this board is not "
				  "listed on\n"
				  "http://flashrom.org/Supported_hardware#Supported_mainboards "
				  "yet.\n");
			if (!ich_spi_force)
				programmer_may_write = 0;
			msg_pinfo("Writes have been disabled. You can enforce "
				  "write support with the\nich_spi_force "
				  "programmer option, but it will most likely "
				  "harm your hardware!\nIf you force flashrom "
				  "you will get no support if something "
				  "breaks.\n");
			if (ich_spi_force)
				msg_pinfo("Continuing with write support "
					  "because the user forced us to!\n");
		}
1731

1732
		tmp = mmio_readl(ich_spibar + ICH9_REG_SSFS);
1733
		msg_pdbg("0x90: 0x%02x (SSFS)\n", tmp & 0xff);
1734
		prettyprint_ich9_reg_ssfs(tmp);
1735
		if (tmp & SSFS_FCERR) {
1736
			msg_pdbg("Clearing SSFS.FCERR\n");
1737
			mmio_writeb(SSFS_FCERR, ich_spibar + ICH9_REG_SSFS);
1738
		}
1739 1740
		msg_pdbg("0x91: 0x%06x (SSFC)\n", tmp >> 8);
		prettyprint_ich9_reg_ssfc(tmp);
1741

1742
		msg_pdbg("0x94: 0x%04x     (PREOP)\n",
1743
			     mmio_readw(ich_spibar + ICH9_REG_PREOP));
1744
		msg_pdbg("0x96: 0x%04x     (OPTYPE)\n",
1745
			     mmio_readw(ich_spibar + ICH9_REG_OPTYPE));
1746
		msg_pdbg("0x98: 0x%08x (OPMENU)\n",
1747
			     mmio_readl(ich_spibar + ICH9_REG_OPMENU));
1748
		msg_pdbg("0x9C: 0x%08x (OPMENU+4)\n",
1749
			     mmio_readl(ich_spibar + ICH9_REG_OPMENU + 4));
1750
		if (ich_generation == CHIPSET_ICH8 && desc_valid) {
1751 1752 1753 1754 1755 1756 1757 1758 1759
			tmp = mmio_readl(ich_spibar + ICH8_REG_VSCC);
			msg_pdbg("0xC1: 0x%08x (VSCC)\n", tmp);
			msg_pdbg("VSCC: ");
			prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
		} else {
			ichspi_bbar = mmio_readl(ich_spibar + ICH9_REG_BBAR);
			msg_pdbg("0xA0: 0x%08x (BBAR)\n",
				     ichspi_bbar);

1760 1761 1762 1763 1764
			if (desc_valid) {
				tmp = mmio_readl(ich_spibar + ICH9_REG_LVSCC);
				msg_pdbg("0xC4: 0x%08x (LVSCC)\n", tmp);
				msg_pdbg("LVSCC: ");
				prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
1765

1766 1767 1768 1769
				tmp = mmio_readl(ich_spibar + ICH9_REG_UVSCC);
				msg_pdbg("0xC8: 0x%08x (UVSCC)\n", tmp);
				msg_pdbg("UVSCC: ");
				prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
1770

1771 1772 1773
				tmp = mmio_readl(ich_spibar + ICH9_REG_FPB);
				msg_pdbg("0xD0: 0x%08x (FPB)\n", tmp);
			}
1774
			ich_set_bbar(0);
1775
		}
1776

1777
		msg_pdbg("\n");
1778
		if (desc_valid) {
1779 1780 1781 1782
			if (read_ich_descriptors_via_fdo(ich_spibar, &desc) ==
			    ICH_RET_OK)
				prettyprint_ich_descriptors(CHIPSET_ICH_UNKNOWN,
							    &desc);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
			/* If the descriptor is valid and indicates multiple
			 * flash devices we need to use hwseq to be able to
			 * access the second flash device.
			 */
			if (ich_spi_mode == ich_auto && desc.content.NC != 0) {
				msg_pinfo("Enabling hardware sequencing due to "
					  "multiple flash chips detected.\n");
				ich_spi_mode = ich_hwseq;
			}
		}

		if (ich_spi_mode == ich_auto && ichspi_lock &&
		    ich_missing_opcodes()) {
			msg_pinfo("Enabling hardware sequencing because "
				  "some important opcode is locked.\n");
			ich_spi_mode = ich_hwseq;
		}

		if (ich_spi_mode == ich_hwseq) {
			if (!desc_valid) {
				msg_perr("Hardware sequencing was requested "
					 "but the flash descriptor is not "
					 "valid. Aborting.\n");
				return ERROR_FATAL;
			}
			hwseq_data.size_comp0 = getFCBA_component_density(&desc, 0);
			hwseq_data.size_comp1 = getFCBA_component_density(&desc, 1);
			register_opaque_programmer(&opaque_programmer_ich_hwseq);
		} else {
			register_spi_programmer(&spi_programmer_ich9);
1813
		}
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		break;
	}

	old = pci_read_byte(dev, 0xdc);
	msg_pdbg("SPI Read Configuration: ");
	new = (old >> 2) & 0x3;
	switch (new) {
	case 0:
	case 1:
	case 2:
		msg_pdbg("prefetching %sabled, caching %sabled, ",
			     (new & 0x2) ? "en" : "dis",
			     (new & 0x1) ? "dis" : "en");
		break;
	default:
		msg_pdbg("invalid prefetching/caching settings, ");
		break;
	}
	return 0;
}

1835 1836 1837 1838 1839 1840 1841 1842
static const struct spi_programmer spi_programmer_via = {
	.type = SPI_CONTROLLER_VIA,
	.max_data_read = 16,
	.max_data_write = 16,
	.command = ich_spi_send_command,
	.multicommand = ich_spi_send_multicommand,
	.read = default_spi_read,
	.write_256 = default_spi_write_256,
1843
	.write_aai = default_spi_write_aai,
1844 1845
};

1846 1847 1848
int via_init_spi(struct pci_dev *dev)
{
	uint32_t mmio_base;
1849
	int i;
1850 1851 1852 1853 1854 1855

	mmio_base = (pci_read_long(dev, 0xbc)) << 8;
	msg_pdbg("MMIO base at = 0x%x\n", mmio_base);
	ich_spibar = physmap("VT8237S MMIO registers", mmio_base, 0x70);

	/* Not sure if it speaks all these bus protocols. */
1856
	internal_buses_supported = BUS_LPC | BUS_FWH;
1857
	ich_generation = CHIPSET_ICH7;
1858
	register_spi_programmer(&spi_programmer_via);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	msg_pdbg("0x00: 0x%04x     (SPIS)\n", mmio_readw(ich_spibar + 0));
	msg_pdbg("0x02: 0x%04x     (SPIC)\n", mmio_readw(ich_spibar + 2));
	msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4));
	for (i = 0; i < 2; i++) {
		int offs;
		offs = 8 + (i * 8);
		msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
			 mmio_readl(ich_spibar + offs), i);
		msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
			 mmio_readl(ich_spibar + offs + 4), i);
	}
	ichspi_bbar = mmio_readl(ich_spibar + 0x50);
	msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
	msg_pdbg("0x54: 0x%04x     (PREOP)\n", mmio_readw(ich_spibar + 0x54));
	msg_pdbg("0x56: 0x%04x     (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
	msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
	msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
	for (i = 0; i < 3; i++) {
		int offs;
		offs = 0x60 + (i * 4);
		msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
			 mmio_readl(ich_spibar + offs), i);
	}
	msg_pdbg("0x6c: 0x%04x     (CLOCK/DEBUG)\n",
		 mmio_readw(ich_spibar + 0x6c));
	if (mmio_readw(ich_spibar) & (1 << 15)) {
		msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
		ichspi_lock = 1;
	}

1890
	ich_set_bbar(0);
1891 1892 1893 1894 1895
	ich_init_opcodes();

	return 0;
}

1896
#endif