spi25.c 26.9 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
29
#include "programmer.h"
30 31
#include "spi.h"

32
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
33
{
34
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
35 36 37
	int ret;
	int i;

38
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
39 40
	if (ret)
		return ret;
41
	msg_cspew("RDID returned");
42
	for (i = 0; i < bytes; i++)
43 44
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
45 46 47
	return 0;
}

48
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
49 50 51 52 53
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

54 55
	ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
			       readarr);
56 57
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
58
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
59 60 61
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
62 63
		ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
				       cmd, readarr);
64 65 66
	}
	if (ret)
		return ret;
67
	msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
68 69 70
	return 0;
}

71
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
72 73 74 75
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
76
	int i;
77

78
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
79 80
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
81
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
82 83 84
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
85
		ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
86 87 88
	}
	if (ret)
		return ret;
89 90 91 92
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
93 94 95
	return 0;
}

96
int spi_write_enable(struct flashctx *flash)
97
{
98
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
99 100 101
	int result;

	/* Send WREN (Write Enable) */
102
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
103 104

	if (result)
105
		msg_cerr("%s failed\n", __func__);
106 107 108 109

	return result;
}

110
int spi_write_disable(struct flashctx *flash)
111
{
112
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
113 114

	/* Send WRDI (Write Disable) */
115
	return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
116 117
}

118
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
119
{
120
	const struct flashchip *chip = flash->chip;
121 122 123 124
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

125
	if (spi_rdid(flash, readarr, bytes)) {
126
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
127
	}
128 129

	if (!oddparity(readarr[0]))
130
		msg_cdbg("RDID byte 0 parity violation. ");
131

132 133 134
	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
135 136
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
137
			msg_cdbg("RDID byte 1 parity violation. ");
138 139 140 141 142 143 144 145 146 147 148
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

149
	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
150

151
	if (id1 == chip->manufacture_id && id2 == chip->model_id)
152 153 154
		return 1;

	/* Test if this is a pure vendor match. */
155
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
156 157 158
		return 1;

	/* Test if there is any vendor ID. */
159
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
160 161 162 163 164
		return 1;

	return 0;
}

165
int probe_spi_rdid(struct flashctx *flash)
166 167 168 169
{
	return probe_spi_rdid_generic(flash, 3);
}

170
int probe_spi_rdid4(struct flashctx *flash)
171
{
172 173 174
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
175
	switch (flash->pgm->spi.type) {
176
#if CONFIG_INTERNAL == 1
177
#if defined(__i386__) || defined(__x86_64__)
178
	case SPI_CONTROLLER_IT87XX:
179
	case SPI_CONTROLLER_WBSIO:
180 181 182
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
183
#endif
184
#endif
185
	default:
186
		return probe_spi_rdid_generic(flash, 4);
187 188 189 190 191
	}

	return 0;
}

192
int probe_spi_rems(struct flashctx *flash)
193
{
194
	const struct flashchip *chip = flash->chip;
195 196 197
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

198
	if (spi_rems(flash, readarr)) {
199
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
200
	}
201 202 203 204

	id1 = readarr[0];
	id2 = readarr[1];

205
	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
206

207
	if (id1 == chip->manufacture_id && id2 == chip->model_id)
208 209 210
		return 1;

	/* Test if this is a pure vendor match. */
211
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
212 213 214
		return 1;

	/* Test if there is any vendor ID. */
215
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
216 217 218 219 220
		return 1;

	return 0;
}

221
int probe_spi_res1(struct flashctx *flash)
222
{
223 224
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
225 226 227
	unsigned char readarr[3];
	uint32_t id2;

228 229
	/* We only want one-byte RES if RDID and REMS are unusable. */

230 231 232
	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
233
	if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
234 235 236 237 238 239 240
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
241 242
	if (!spi_rems(flash, readarr) &&
	    memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
243 244 245 246 247
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

248
	if (spi_res(flash, readarr, 1)) {
249
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
250
	}
251 252

	id2 = readarr[0];
253

254
	msg_cdbg("%s: id 0x%x\n", __func__, id2);
255

256
	if (id2 != flash->chip->model_id)
257 258 259 260 261
		return 0;

	return 1;
}

262
int probe_spi_res2(struct flashctx *flash)
263 264 265 266
{
	unsigned char readarr[2];
	uint32_t id1, id2;

267
	if (spi_res(flash, readarr, 2)) {
268
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
269
	}
270 271 272 273 274 275

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

276
	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
277 278 279 280 281
		return 0;

	return 1;
}

Stefan Tauner's avatar
Stefan Tauner committed
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
int probe_spi_res3(struct flashctx *flash)
{
	unsigned char readarr[3];
	uint32_t id1, id2;

	if (spi_res(flash, readarr, 3)) {
		return 0;
	}

	id1 = (readarr[0] << 8) | readarr[1];
	id2 = readarr[2];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
		return 0;

	return 1;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
	static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
	unsigned char readarr[AT25F_RDID_INSIZE];
	uint32_t id1;
	uint32_t id2;

	if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);

	if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
		return 1;

	return 0;
}

324
int spi_chip_erase_60(struct flashctx *flash)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
345
	result = spi_send_multicommand(flash, cmds);
346
	if (result) {
347
		msg_cerr("%s failed during command execution\n",
348 349 350 351 352 353 354
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
355
	while (spi_read_status_register(flash) & SPI_SR_WIP)
356
		programmer_delay(1000 * 1000);
357
	/* FIXME: Check the status register for errors. */
358 359 360
	return 0;
}

Stefan Tauner's avatar
Stefan Tauner committed
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
int spi_chip_erase_62(struct flashctx *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_62_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_62 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 2-5 s, so wait in 100 ms steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

398
int spi_chip_erase_c7(struct flashctx *flash)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

419
	result = spi_send_multicommand(flash, cmds);
420
	if (result) {
421
		msg_cerr("%s failed during command execution\n", __func__);
422 423 424 425 426 427
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
428
	while (spi_read_status_register(flash) & SPI_SR_WIP)
429
		programmer_delay(1000 * 1000);
430
	/* FIXME: Check the status register for errors. */
431 432 433
	return 0;
}

434 435
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

461
	result = spi_send_multicommand(flash, cmds);
462
	if (result) {
463
		msg_cerr("%s failed during command execution at address 0x%x\n",
464 465 466 467 468 469
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
470
	while (spi_read_status_register(flash) & SPI_SR_WIP)
471
		programmer_delay(100 * 1000);
472
	/* FIXME: Check the status register for errors. */
473 474 475 476 477 478 479 480
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
481 482
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

508
	result = spi_send_multicommand(flash, cmds);
509
	if (result) {
510
		msg_cerr("%s failed during command execution at address 0x%x\n",
511 512 513 514 515 516
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
517
	while (spi_read_status_register(flash) & SPI_SR_WIP)
518
		programmer_delay(100 * 1000);
519
	/* FIXME: Check the status register for errors. */
520 521 522 523 524 525
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
526 527
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

553
	result = spi_send_multicommand(flash, cmds);
554
	if (result) {
555
		msg_cerr("%s failed during command execution at address 0x%x\n",
556 557 558 559 560 561
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
562
	while (spi_read_status_register(flash) & SPI_SR_WIP)
563
		programmer_delay(100 * 1000);
564
	/* FIXME: Check the status register for errors. */
565 566 567 568
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
569 570
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

596
	result = spi_send_multicommand(flash, cmds);
597
	if (result) {
598
		msg_cerr("%s failed during command execution at address 0x%x\n",
599 600 601 602 603 604
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
605
	while (spi_read_status_register(flash) & SPI_SR_WIP)
606
		programmer_delay(10 * 1000);
607
	/* FIXME: Check the status register for errors. */
608 609 610
	return 0;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_50_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_50,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 10 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_81_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_81,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 8 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

691 692
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
693
{
694
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
695
		msg_cerr("%s called with incorrect arguments\n",
696 697 698 699 700 701
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

Stefan Tauner's avatar
Stefan Tauner committed
702 703 704 705 706 707 708 709 710 711
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_62(flash);
}

712 713
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
714
{
715
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
716
		msg_cerr("%s called with incorrect arguments\n",
717 718 719 720 721 722
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

Stefan Tauner's avatar
Stefan Tauner committed
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
	switch(opcode){
	case 0xff:
	case 0x00:
		/* Not specified, assuming "not supported". */
		return NULL;
	case 0x20:
		return &spi_block_erase_20;
	case 0x52:
		return &spi_block_erase_52;
	case 0x60:
		return &spi_block_erase_60;
	case 0xc7:
		return &spi_block_erase_c7;
	case 0xd7:
		return &spi_block_erase_d7;
	case 0xd8:
		return &spi_block_erase_d8;
	default:
		msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
			  "this at flashrom@flashrom.org\n", __func__, opcode);
		return NULL;
	}
}

749 750
int spi_byte_program(struct flashctx *flash, unsigned int addr,
		     uint8_t databyte)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

777
	result = spi_send_multicommand(flash, cmds);
778
	if (result) {
779
		msg_cerr("%s failed during command execution at address 0x%x\n",
780 781 782 783 784
			__func__, addr);
	}
	return result;
}

785 786
int spi_nbyte_program(struct flashctx *flash, unsigned int addr, uint8_t *bytes,
		      unsigned int len)
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
815
		msg_cerr("%s called for zero-length write\n", __func__);
816 817 818
		return 1;
	}
	if (len > 256) {
819
		msg_cerr("%s called for too long a write\n", __func__);
820 821 822 823 824
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

825
	result = spi_send_multicommand(flash, cmds);
826
	if (result) {
827
		msg_cerr("%s failed during command execution at address 0x%x\n",
828 829 830 831 832
			__func__, addr);
	}
	return result;
}

833 834
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
		   unsigned int len)
835 836 837 838 839 840 841 842 843
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
844
	return spi_send_command(flash, sizeof(cmd), len, cmd, bytes);
845 846 847
}

/*
848
 * Read a part of the flash chip.
849
 * FIXME: Use the chunk code from Michael Karcher instead.
850 851
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
852 853
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len, unsigned int chunksize)
854 855
{
	int rc = 0;
856
	unsigned int i, j, starthere, lenhere, toread;
857
	unsigned int page_size = flash->chip->page_size;
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
876
			rc = spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread);
877 878 879 880 881 882 883 884 885 886
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

887 888
/*
 * Write a part of the flash chip.
889
 * FIXME: Use the chunk code from Michael Karcher instead.
890 891
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
892 893
int spi_write_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		      unsigned int len, unsigned int chunksize)
894 895
{
	int rc = 0;
896
	unsigned int i, j, starthere, lenhere, towrite;
897
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
898
	 * in struct flashctx to do this properly. All chips using
899 900 901
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
902
	unsigned int page_size = flash->chip->page_size;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
921
			rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
922 923
			if (rc)
				break;
924
			while (spi_read_status_register(flash) & SPI_SR_WIP)
925 926 927 928 929 930 931 932 933
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

934 935 936 937 938 939
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
940
/* real chunksize is 1, logical chunksize is 1 */
941 942
int spi_chip_write_1(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len)
943
{
944 945
	unsigned int i;
	int result = 0;
946

947
	for (i = start; i < start + len; i++) {
948
		result = spi_byte_program(flash, i, buf[i - start]);
949 950
		if (result)
			return 1;
951
		while (spi_read_status_register(flash) & SPI_SR_WIP)
952 953 954 955 956 957
			programmer_delay(10);
	}

	return 0;
}

958
int default_spi_write_aai(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
959 960
{
	uint32_t pos = start;
961
	int result;
962 963 964 965 966 967 968 969 970 971 972 973 974
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
975 976 977
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
978 979 980 981 982 983 984 985 986 987 988
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
989

990
	switch (flash->pgm->spi.type) {
991
#if CONFIG_INTERNAL == 1
992
#if defined(__i386__) || defined(__x86_64__)
993
	case SPI_CONTROLLER_IT87XX:
994
	case SPI_CONTROLLER_WBSIO:
995
		msg_perr("%s: impossible with this SPI controller,"
996
				" degrading to byte program\n", __func__);
997
		return spi_chip_write_1(flash, buf, start, len);
998
#endif
999 1000 1001 1002
#endif
	default:
		break;
	}
1003

1004 1005 1006
	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
1007
	 * FIXME: Move this to generic code.
1008
	 */
1009
	/* The data sheet requires a start address with the low bit cleared. */
1010
	if (start % 2) {
1011 1012
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
1013 1014 1015
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
1016 1017 1018 1019 1020 1021 1022 1023
		cmds[1].writearr = (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(pos >> 16) & 0xff,
					(pos >> 8) & 0xff,
					(pos & 0xff),
					buf[pos - start],
					buf[pos - start + 1]
				};
1024 1025
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1026 1027 1028 1029 1030
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
1031 1032
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1033 1034 1035
	}


1036
	result = spi_send_multicommand(flash, cmds);
1037 1038 1039
	if (result) {
		msg_cerr("%s failed during start command execution\n",
			 __func__);
1040 1041 1042
		/* FIXME: Should we send WRDI here as well to make sure the chip
		 * is not in AAI mode?
		 */
1043
		return result;
1044
	}
1045
	while (spi_read_status_register(flash) & SPI_SR_WIP)
1046 1047 1048 1049 1050
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

1051 1052
	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
1053 1054
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
1055 1056
		spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0,
				 cmd, NULL);
1057
		while (spi_read_status_register(flash) & SPI_SR_WIP)
1058
			programmer_delay(10);
1059
	}
1060

1061 1062 1063
	/* Use WRDI to exit AAI mode. This needs to be done before issuing any
	 * other non-AAI command.
	 */
1064
	spi_write_disable(flash);
1065

1066 1067
	/* Write remaining byte (if any). */
	if (pos < start + len) {
1068
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
1069 1070 1071
			return SPI_GENERIC_ERROR;
		pos += pos % 2;
	}
1072

1073 1074
	return 0;
}