spi25.c 26.6 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
29
#include "programmer.h"
30 31
#include "spi.h"

32
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
33
{
34
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
35 36 37
	int ret;
	int i;

38
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
39 40
	if (ret)
		return ret;
41
	msg_cspew("RDID returned");
42
	for (i = 0; i < bytes; i++)
43 44
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
45 46 47
	return 0;
}

48
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
49 50 51 52 53
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

54 55
	ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
			       readarr);
56 57
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
58
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
59 60 61
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
62 63
		ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
				       cmd, readarr);
64 65 66
	}
	if (ret)
		return ret;
67
	msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
68 69 70
	return 0;
}

71
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
72 73 74 75
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
76
	int i;
77

78
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
79 80
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
81
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
82 83 84
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
85
		ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
86 87 88
	}
	if (ret)
		return ret;
89 90 91 92
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
93 94 95
	return 0;
}

96
int spi_write_enable(struct flashctx *flash)
97
{
98
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
99 100 101
	int result;

	/* Send WREN (Write Enable) */
102
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
103 104

	if (result)
105
		msg_cerr("%s failed\n", __func__);
106 107 108 109

	return result;
}

110
int spi_write_disable(struct flashctx *flash)
111
{
112
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
113 114

	/* Send WRDI (Write Disable) */
115
	return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
116 117
}

118
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
119
{
120
	const struct flashchip *chip = flash->chip;
121 122 123 124
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

125
	if (spi_rdid(flash, readarr, bytes)) {
126
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
127
	}
128 129

	if (!oddparity(readarr[0]))
130
		msg_cdbg("RDID byte 0 parity violation. ");
131

132 133 134
	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
135 136
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
137
			msg_cdbg("RDID byte 1 parity violation. ");
138 139 140 141 142 143 144 145 146 147 148
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

149
	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
150

151
	if (id1 == chip->manufacture_id && id2 == chip->model_id)
152 153 154
		return 1;

	/* Test if this is a pure vendor match. */
155
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
156 157 158
		return 1;

	/* Test if there is any vendor ID. */
159
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
160 161 162 163 164
		return 1;

	return 0;
}

165
int probe_spi_rdid(struct flashctx *flash)
166 167 168 169
{
	return probe_spi_rdid_generic(flash, 3);
}

170
int probe_spi_rdid4(struct flashctx *flash)
171
{
172 173 174
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
175
	switch (flash->pgm->spi.type) {
176
#if CONFIG_INTERNAL == 1
177
#if defined(__i386__) || defined(__x86_64__)
178
	case SPI_CONTROLLER_IT87XX:
179
	case SPI_CONTROLLER_WBSIO:
180 181 182
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
183
#endif
184
#endif
185
	default:
186
		return probe_spi_rdid_generic(flash, 4);
187 188 189 190 191
	}

	return 0;
}

192
int probe_spi_rems(struct flashctx *flash)
193
{
194
	const struct flashchip *chip = flash->chip;
195 196 197
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

198
	if (spi_rems(flash, readarr)) {
199
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
200
	}
201 202 203 204

	id1 = readarr[0];
	id2 = readarr[1];

205
	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
206

207
	if (id1 == chip->manufacture_id && id2 == chip->model_id)
208 209 210
		return 1;

	/* Test if this is a pure vendor match. */
211
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
212 213 214
		return 1;

	/* Test if there is any vendor ID. */
215
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
216 217 218 219 220
		return 1;

	return 0;
}

221
int probe_spi_res1(struct flashctx *flash)
222
{
223 224
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
225 226 227
	unsigned char readarr[3];
	uint32_t id2;

228 229
	/* We only want one-byte RES if RDID and REMS are unusable. */

230 231 232
	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
233
	if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
234 235 236 237 238 239 240
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
241 242
	if (!spi_rems(flash, readarr) &&
	    memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
243 244 245 246 247
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

248
	if (spi_res(flash, readarr, 1)) {
249
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
250
	}
251 252

	id2 = readarr[0];
253

254
	msg_cdbg("%s: id 0x%x\n", __func__, id2);
255

256
	if (id2 != flash->chip->model_id)
257 258 259 260 261
		return 0;

	return 1;
}

262
int probe_spi_res2(struct flashctx *flash)
263 264 265 266
{
	unsigned char readarr[2];
	uint32_t id1, id2;

267
	if (spi_res(flash, readarr, 2)) {
268
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
269
	}
270 271 272 273 274 275

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

276
	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
277 278 279 280 281
		return 0;

	return 1;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
	static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
	unsigned char readarr[AT25F_RDID_INSIZE];
	uint32_t id1;
	uint32_t id2;

	if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);

	if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
		return 1;

	return 0;
}

304
int spi_chip_erase_60(struct flashctx *flash)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
325
	result = spi_send_multicommand(flash, cmds);
326
	if (result) {
327
		msg_cerr("%s failed during command execution\n",
328 329 330 331 332 333 334
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
335
	while (spi_read_status_register(flash) & SPI_SR_WIP)
336
		programmer_delay(1000 * 1000);
337
	/* FIXME: Check the status register for errors. */
338 339 340
	return 0;
}

Stefan Tauner's avatar
Stefan Tauner committed
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
int spi_chip_erase_62(struct flashctx *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_62_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_62 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 2-5 s, so wait in 100 ms steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(100 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

378
int spi_chip_erase_c7(struct flashctx *flash)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

399
	result = spi_send_multicommand(flash, cmds);
400
	if (result) {
401
		msg_cerr("%s failed during command execution\n", __func__);
402 403 404 405 406 407
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
408
	while (spi_read_status_register(flash) & SPI_SR_WIP)
409
		programmer_delay(1000 * 1000);
410
	/* FIXME: Check the status register for errors. */
411 412 413
	return 0;
}

414 415
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

441
	result = spi_send_multicommand(flash, cmds);
442
	if (result) {
443
		msg_cerr("%s failed during command execution at address 0x%x\n",
444 445 446 447 448 449
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
450
	while (spi_read_status_register(flash) & SPI_SR_WIP)
451
		programmer_delay(100 * 1000);
452
	/* FIXME: Check the status register for errors. */
453 454 455 456 457 458 459 460
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
461 462
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

488
	result = spi_send_multicommand(flash, cmds);
489
	if (result) {
490
		msg_cerr("%s failed during command execution at address 0x%x\n",
491 492 493 494 495 496
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
497
	while (spi_read_status_register(flash) & SPI_SR_WIP)
498
		programmer_delay(100 * 1000);
499
	/* FIXME: Check the status register for errors. */
500 501 502 503 504 505
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
506 507
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

533
	result = spi_send_multicommand(flash, cmds);
534
	if (result) {
535
		msg_cerr("%s failed during command execution at address 0x%x\n",
536 537 538 539 540 541
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
542
	while (spi_read_status_register(flash) & SPI_SR_WIP)
543
		programmer_delay(100 * 1000);
544
	/* FIXME: Check the status register for errors. */
545 546 547 548
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
549 550
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

576
	result = spi_send_multicommand(flash, cmds);
577
	if (result) {
578
		msg_cerr("%s failed during command execution at address 0x%x\n",
579 580 581 582 583 584
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
585
	while (spi_read_status_register(flash) & SPI_SR_WIP)
586
		programmer_delay(10 * 1000);
587
	/* FIXME: Check the status register for errors. */
588 589 590
	return 0;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_50_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_50,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 10 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
/*		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, { */
		.writecnt	= JEDEC_BE_81_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_81,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(flash, cmds);
	if (result) {
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 8 ms, so wait in 1 ms steps.
	 */
	while (spi_read_status_register(flash) & SPI_SR_WIP)
		programmer_delay(1 * 1000);
	/* FIXME: Check the status register for errors. */
	return 0;
}

671 672
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
673
{
674
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
675
		msg_cerr("%s called with incorrect arguments\n",
676 677 678 679 680 681
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

Stefan Tauner's avatar
Stefan Tauner committed
682 683 684 685 686 687 688 689 690 691
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_62(flash);
}

692 693
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
694
{
695
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
696
		msg_cerr("%s called with incorrect arguments\n",
697 698 699 700 701 702
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

Stefan Tauner's avatar
Stefan Tauner committed
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
	switch(opcode){
	case 0xff:
	case 0x00:
		/* Not specified, assuming "not supported". */
		return NULL;
	case 0x20:
		return &spi_block_erase_20;
	case 0x52:
		return &spi_block_erase_52;
	case 0x60:
		return &spi_block_erase_60;
	case 0xc7:
		return &spi_block_erase_c7;
	case 0xd7:
		return &spi_block_erase_d7;
	case 0xd8:
		return &spi_block_erase_d8;
	default:
		msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
			  "this at flashrom@flashrom.org\n", __func__, opcode);
		return NULL;
	}
}

729 730
int spi_byte_program(struct flashctx *flash, unsigned int addr,
		     uint8_t databyte)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

757
	result = spi_send_multicommand(flash, cmds);
758
	if (result) {
759
		msg_cerr("%s failed during command execution at address 0x%x\n",
760 761 762 763 764
			__func__, addr);
	}
	return result;
}

765 766
int spi_nbyte_program(struct flashctx *flash, unsigned int addr, uint8_t *bytes,
		      unsigned int len)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
795
		msg_cerr("%s called for zero-length write\n", __func__);
796 797 798
		return 1;
	}
	if (len > 256) {
799
		msg_cerr("%s called for too long a write\n", __func__);
800 801 802 803 804
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

805
	result = spi_send_multicommand(flash, cmds);
806
	if (result) {
807
		msg_cerr("%s failed during command execution at address 0x%x\n",
808 809 810 811 812
			__func__, addr);
	}
	return result;
}

813 814
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
		   unsigned int len)
815 816 817 818 819 820 821 822 823
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
824
	return spi_send_command(flash, sizeof(cmd), len, cmd, bytes);
825 826 827
}

/*
828
 * Read a part of the flash chip.
829
 * FIXME: Use the chunk code from Michael Karcher instead.
830 831
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
832 833
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len, unsigned int chunksize)
834 835
{
	int rc = 0;
836
	unsigned int i, j, starthere, lenhere, toread;
837
	unsigned int page_size = flash->chip->page_size;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
856
			rc = spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread);
857 858 859 860 861 862 863 864 865 866
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

867 868
/*
 * Write a part of the flash chip.
869
 * FIXME: Use the chunk code from Michael Karcher instead.
870 871
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
872 873
int spi_write_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		      unsigned int len, unsigned int chunksize)
874 875
{
	int rc = 0;
876
	unsigned int i, j, starthere, lenhere, towrite;
877
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
878
	 * in struct flashctx to do this properly. All chips using
879 880 881
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
882
	unsigned int page_size = flash->chip->page_size;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
901
			rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
902 903
			if (rc)
				break;
904
			while (spi_read_status_register(flash) & SPI_SR_WIP)
905 906 907 908 909 910 911 912 913
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

914 915 916 917 918 919
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
920
/* real chunksize is 1, logical chunksize is 1 */
921 922
int spi_chip_write_1(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len)
923
{
924 925
	unsigned int i;
	int result = 0;
926

927
	for (i = start; i < start + len; i++) {
928
		result = spi_byte_program(flash, i, buf[i - start]);
929 930
		if (result)
			return 1;
931
		while (spi_read_status_register(flash) & SPI_SR_WIP)
932 933 934 935 936 937
			programmer_delay(10);
	}

	return 0;
}

938
int default_spi_write_aai(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
939 940
{
	uint32_t pos = start;
941
	int result;
942 943 944 945 946 947 948 949 950 951 952 953 954
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
955 956 957
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
958 959 960 961 962 963 964 965 966 967 968
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
969

970
	switch (flash->pgm->spi.type) {
971
#if CONFIG_INTERNAL == 1
972
#if defined(__i386__) || defined(__x86_64__)
973
	case SPI_CONTROLLER_IT87XX:
974
	case SPI_CONTROLLER_WBSIO:
975
		msg_perr("%s: impossible with this SPI controller,"
976
				" degrading to byte program\n", __func__);
977
		return spi_chip_write_1(flash, buf, start, len);
978
#endif
979 980 981 982
#endif
	default:
		break;
	}
983

984 985 986
	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
987
	 * FIXME: Move this to generic code.
988
	 */
989
	/* The data sheet requires a start address with the low bit cleared. */
990
	if (start % 2) {
991 992
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
993 994 995
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
996 997 998 999 1000 1001 1002 1003
		cmds[1].writearr = (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(pos >> 16) & 0xff,
					(pos >> 8) & 0xff,
					(pos & 0xff),
					buf[pos - start],
					buf[pos - start + 1]
				};
1004 1005
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1006 1007 1008 1009 1010
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
1011 1012
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1013 1014 1015
	}


1016
	result = spi_send_multicommand(flash, cmds);
1017 1018 1019
	if (result) {
		msg_cerr("%s failed during start command execution\n",
			 __func__);
1020 1021 1022
		/* FIXME: Should we send WRDI here as well to make sure the chip
		 * is not in AAI mode?
		 */
1023
		return result;
1024
	}
1025
	while (spi_read_status_register(flash) & SPI_SR_WIP)
1026 1027 1028 1029 1030
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

1031 1032
	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
1033 1034
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
1035 1036
		spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0,
				 cmd, NULL);
1037
		while (spi_read_status_register(flash) & SPI_SR_WIP)
1038
			programmer_delay(10);
1039
	}
1040

1041 1042 1043
	/* Use WRDI to exit AAI mode. This needs to be done before issuing any
	 * other non-AAI command.
	 */
1044
	spi_write_disable(flash);
1045

1046 1047
	/* Write remaining byte (if any). */
	if (pos < start + len) {
1048
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
1049 1050 1051
			return SPI_GENERIC_ERROR;
		pos += pos % 2;
	}
1052

1053 1054
	return 0;
}