spi25.c 31 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
29
#include "programmer.h"
30 31 32 33
#include "spi.h"

static int spi_rdid(unsigned char *readarr, int bytes)
{
34
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
35 36 37 38 39 40
	int ret;
	int i;

	ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
	if (ret)
		return ret;
41
	msg_cspew("RDID returned");
42
	for (i = 0; i < bytes; i++)
43 44
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
	return 0;
}

static int spi_rems(unsigned char *readarr)
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

	ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
		ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
	}
	if (ret)
		return ret;
65
	msg_cspew("REMS returned %02x %02x. ", readarr[0], readarr[1]);
66 67 68
	return 0;
}

69
static int spi_res(unsigned char *readarr, int bytes)
70 71 72 73
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
74
	int i;
75

76
	ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
77 78 79 80 81 82
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
83
		ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
84 85 86
	}
	if (ret)
		return ret;
87 88 89 90
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
91 92 93 94 95
	return 0;
}

int spi_write_enable(void)
{
96
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
97 98 99 100 101 102
	int result;

	/* Send WREN (Write Enable) */
	result = spi_send_command(sizeof(cmd), 0, cmd, NULL);

	if (result)
103
		msg_cerr("%s failed\n", __func__);
104 105 106 107 108 109

	return result;
}

int spi_write_disable(void)
{
110
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
111 112 113 114 115 116 117 118 119 120 121

	/* Send WRDI (Write Disable) */
	return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}

static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
{
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

Stefan Tauner's avatar
Stefan Tauner committed
122 123
	if (spi_rdid(readarr, bytes)) {
		msg_cdbg("\n");
124
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
125
	}
126 127

	if (!oddparity(readarr[0]))
128
		msg_cdbg("RDID byte 0 parity violation. ");
129

130 131 132
	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
133 134
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
135
			msg_cdbg("RDID byte 1 parity violation. ");
136 137 138 139 140 141 142 143 144 145 146
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

147
	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

int probe_spi_rdid(struct flashchip *flash)
{
	return probe_spi_rdid_generic(flash, 3);
}

int probe_spi_rdid4(struct flashchip *flash)
{
178 179 180
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
181
	switch (spi_programmer->type) {
182
#if CONFIG_INTERNAL == 1
183
#if defined(__i386__) || defined(__x86_64__)
184
	case SPI_CONTROLLER_IT87XX:
185
	case SPI_CONTROLLER_WBSIO:
186 187 188
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
189
#endif
190
#endif
191
	default:
192
		return probe_spi_rdid_generic(flash, 4);
193 194 195 196 197 198 199 200 201 202
	}

	return 0;
}

int probe_spi_rems(struct flashchip *flash)
{
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

Stefan Tauner's avatar
Stefan Tauner committed
203 204
	if (spi_rems(readarr)) {
		msg_cdbg("\n");
205
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
206
	}
207 208 209 210

	id1 = readarr[0];
	id2 = readarr[1];

211
	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

235
int probe_spi_res1(struct flashchip *flash)
236
{
237 238
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
239 240 241
	unsigned char readarr[3];
	uint32_t id2;

242 243
	/* We only want one-byte RES if RDID and REMS are unusable. */

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) &&
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

Stefan Tauner's avatar
Stefan Tauner committed
261 262
	if (spi_res(readarr, 1)) {
		msg_cdbg("\n");
263
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
264
	}
265 266

	id2 = readarr[0];
267

268
	msg_cdbg("%s: id 0x%x\n", __func__, id2);
269

Stefan Tauner's avatar
Stefan Tauner committed
270
	if (id2 != flash->model_id)
271 272 273 274 275 276 277 278 279
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

280 281 282 283 284
int probe_spi_res2(struct flashchip *flash)
{
	unsigned char readarr[2];
	uint32_t id1, id2;

Stefan Tauner's avatar
Stefan Tauner committed
285 286
	if (spi_res(readarr, 2)) {
		msg_cdbg("\n");
287
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
288
	}
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->manufacture_id || id2 != flash->model_id)
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

305 306
uint8_t spi_read_status_register(void)
{
307
	static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
308 309 310 311 312 313 314
	/* FIXME: No workarounds for driver/hardware bugs in generic code. */
	unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
	int ret;

	/* Read Status Register */
	ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
	if (ret)
315
		msg_cerr("RDSR failed!\n");
316 317 318 319 320

	return readarr[0];
}

/* Prettyprint the status register. Common definitions. */
321
void spi_prettyprint_status_register_welwip(uint8_t status)
322 323 324 325 326 327 328 329
{
	msg_cdbg("Chip status register: Write Enable Latch (WEL) is "
		     "%sset\n", (status & (1 << 1)) ? "" : "not ");
	msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is "
		     "%sset\n", (status & (1 << 0)) ? "" : "not ");
}

/* Prettyprint the status register. Common definitions. */
330
void spi_prettyprint_status_register_bp3210(uint8_t status, int bp)
331
{
332 333 334 335 336 337 338 339 340 341 342 343 344 345
	switch (bp) {
	/* Fall through. */
	case 3:
		msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) "
			     "is %sset\n", (status & (1 << 5)) ? "" : "not ");
	case 2:
		msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) "
			     "is %sset\n", (status & (1 << 4)) ? "" : "not ");
	case 1:
		msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) "
			     "is %sset\n", (status & (1 << 3)) ? "" : "not ");
	case 0:
		msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) "
			     "is %sset\n", (status & (1 << 2)) ? "" : "not ");
346 347 348
	}
}

349 350
/* Prettyprint the status register. Unnamed bits. */
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
351
{
352 353
	msg_cdbg("Chip status register: Bit %i "
		 "is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
354 355
}

356
static void spi_prettyprint_status_register_common(uint8_t status)
357
{
358
	spi_prettyprint_status_register_bp3210(status, 3);
359 360 361
	spi_prettyprint_status_register_welwip(status);
}

362 363 364 365 366 367
/* Prettyprint the status register. Works for
 * ST M25P series
 * MX MX25L series
 */
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
368
	msg_cdbg("Chip status register: Status Register Write Disable "
369
		     "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
370
	msg_cdbg("Chip status register: Bit 6 is "
371 372 373 374 375 376
		     "%sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

void spi_prettyprint_status_register_sst25(uint8_t status)
{
377
	msg_cdbg("Chip status register: Block Protect Write Disable "
378
		     "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
379
	msg_cdbg("Chip status register: Auto Address Increment Programming "
380 381 382 383 384 385 386 387 388
		     "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

/* Prettyprint the status register. Works for
 * SST 25VF016
 */
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
389
	static const char *const bpt[] = {
390 391 392 393 394 395 396 397 398
		"none",
		"1F0000H-1FFFFFH",
		"1E0000H-1FFFFFH",
		"1C0000H-1FFFFFH",
		"180000H-1FFFFFH",
		"100000H-1FFFFFH",
		"all", "all"
	};
	spi_prettyprint_status_register_sst25(status);
399
	msg_cdbg("Resulting block protection : %s\n",
400 401 402 403 404
		     bpt[(status & 0x1c) >> 2]);
}

void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
405
	static const char *const bpt[] = {
406 407 408 409 410 411 412
		"none",
		"0x70000-0x7ffff",
		"0x60000-0x7ffff",
		"0x40000-0x7ffff",
		"all blocks", "all blocks", "all blocks", "all blocks"
	};
	spi_prettyprint_status_register_sst25(status);
413
	msg_cdbg("Resulting block protection : %s\n",
414 415 416
		bpt[(status & 0x1c) >> 2]);
}

417
int spi_prettyprint_status_register(struct flashchip *flash)
418 419 420 421
{
	uint8_t status;

	status = spi_read_status_register();
422
	msg_cdbg("Chip status register is %02x\n", status);
423 424 425 426 427 428
	switch (flash->manufacture_id) {
	case ST_ID:
		if (((flash->model_id & 0xff00) == 0x2000) ||
		    ((flash->model_id & 0xff00) == 0x2500))
			spi_prettyprint_status_register_st_m25p(status);
		break;
429
	case MACRONIX_ID:
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		if ((flash->model_id & 0xff00) == 0x2000)
			spi_prettyprint_status_register_st_m25p(status);
		break;
	case SST_ID:
		switch (flash->model_id) {
		case 0x2541:
			spi_prettyprint_status_register_sst25vf016(status);
			break;
		case 0x8d:
		case 0x258d:
			spi_prettyprint_status_register_sst25vf040b(status);
			break;
		default:
			spi_prettyprint_status_register_sst25(status);
			break;
		}
		break;
	}
448
	return 0;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
}

int spi_chip_erase_60(struct flashchip *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(cmds);
	if (result) {
474
		msg_cerr("%s failed during command execution\n",
475 476 477 478 479 480 481 482 483 484
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(1000 * 1000);
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
485
		msg_cerr("ERASE FAILED!\n");
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		return -1;
	}
	return 0;
}

int spi_chip_erase_c7(struct flashchip *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
514
		msg_cerr("%s failed during command execution\n", __func__);
515 516 517 518 519 520 521 522 523
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(1000 * 1000);
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
524
		msg_cerr("ERASE FAILED!\n");
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		return -1;
	}
	return 0;
}

int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
558
		msg_cerr("%s failed during command execution at address 0x%x\n",
559 560 561 562 563 564 565 566 567
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
568
		msg_cerr("ERASE FAILED!\n");
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		return -1;
	}
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
607
		msg_cerr("%s failed during command execution at address 0x%x\n",
608 609 610 611 612 613 614 615 616
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
617
		msg_cerr("ERASE FAILED!\n");
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		return -1;
	}
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
654
		msg_cerr("%s failed during command execution at address 0x%x\n",
655 656 657 658 659 660 661 662 663
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
664
		msg_cerr("ERASE FAILED!\n");
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		return -1;
	}
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
699
		msg_cerr("%s failed during command execution at address 0x%x\n",
700 701 702 703 704 705 706 707 708
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(10 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
709
		msg_cerr("ERASE FAILED!\n");
710 711 712 713 714 715 716 717
		return -1;
	}
	return 0;
}

int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
718
		msg_cerr("%s called with incorrect arguments\n",
719 720 721 722 723 724 725 726 727
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
728
		msg_cerr("%s called with incorrect arguments\n",
729 730 731 732 733 734 735 736
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

int spi_write_status_enable(void)
{
737
	static const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
738 739 740 741 742 743
	int result;

	/* Send EWSR (Enable Write Status Register). */
	result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);

	if (result)
744
		msg_cerr("%s failed\n", __func__);
745 746 747 748 749 750 751 752

	return result;
}

/*
 * This is according the SST25VF016 datasheet, who knows it is more
 * generic that this...
 */
753
static int spi_write_status_register_ewsr(struct flashchip *flash, int status)
754 755
{
	int result;
756
	int i = 0;
757 758
	struct spi_command cmds[] = {
	{
759
	/* WRSR requires either EWSR or WREN depending on chip type. */
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		.writecnt	= JEDEC_EWSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_EWSR },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
778
		msg_cerr("%s failed during command execution\n",
779
			__func__);
780 781 782 783
		/* No point in waiting for the command to complete if execution
		 * failed.
		 */
		return result;
784
	}
785 786 787 788 789
	/* WRSR performs a self-timed erase before the changes take effect.
	 * This may take 50-85 ms in most cases, and some chips apparently
	 * allow running RDSR only once. Therefore pick an initial delay of
	 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
	 */
790
	programmer_delay(100 * 1000);
791 792 793 794 795 796 797 798
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) {
		if (++i > 490) {
			msg_cerr("Error: WIP bit after WRSR never cleared\n");
			return TIMEOUT_ERROR;
		}
		programmer_delay(10 * 1000);
	}
	return 0;
799 800 801 802 803
}

static int spi_write_status_register_wren(struct flashchip *flash, int status)
{
	int result;
804
	int i = 0;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	struct spi_command cmds[] = {
	{
	/* WRSR requires either EWSR or WREN depending on chip type. */
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
828 829 830 831
		/* No point in waiting for the command to complete if execution
		 * failed.
		 */
		return result;
832
	}
833 834 835 836 837
	/* WRSR performs a self-timed erase before the changes take effect.
	 * This may take 50-85 ms in most cases, and some chips apparently
	 * allow running RDSR only once. Therefore pick an initial delay of
	 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
	 */
838
	programmer_delay(100 * 1000);
839 840 841 842 843 844 845 846
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) {
		if (++i > 490) {
			msg_cerr("Error: WIP bit after WRSR never cleared\n");
			return TIMEOUT_ERROR;
		}
		programmer_delay(10 * 1000);
	}
	return 0;
847 848
}

849
int spi_write_status_register(struct flashchip *flash, int status)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
{
	int ret = 1;

	if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
		msg_cdbg("Missing status register write definition, assuming "
			 "EWSR is needed\n");
		flash->feature_bits |= FEATURE_WRSR_EWSR;
	}
	if (flash->feature_bits & FEATURE_WRSR_WREN)
		ret = spi_write_status_register_wren(flash, status);
	if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR))
		ret = spi_write_status_register_ewsr(flash, status);
	return ret;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
int spi_byte_program(int addr, uint8_t databyte)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
894
		msg_cerr("%s failed during command execution at address 0x%x\n",
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
			__func__, addr);
	}
	return result;
}

int spi_nbyte_program(int addr, uint8_t *bytes, int len)
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
929
		msg_cerr("%s called for zero-length write\n", __func__);
930 931 932
		return 1;
	}
	if (len > 256) {
933
		msg_cerr("%s called for too long a write\n", __func__);
934 935 936 937 938 939 940
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

	result = spi_send_multicommand(cmds);
	if (result) {
941
		msg_cerr("%s failed during command execution at address 0x%x\n",
942 943 944 945 946
			__func__, addr);
	}
	return result;
}

947 948 949 950
/* A generic brute-force block protection disable works like this:
 * Write 0x00 to the status register. Check if any locks are still set (that
 * part is chip specific). Repeat once.
 */
951
int spi_disable_blockprotect(struct flashchip *flash)
952 953 954 955 956
{
	uint8_t status;
	int result;

	status = spi_read_status_register();
957 958 959 960 961 962 963 964 965 966 967
	/* If block protection is disabled, stop here. */
	if ((status & 0x3c) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	result = spi_write_status_register(flash, status & ~0x3c);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
	status = spi_read_status_register();
968
	if ((status & 0x3c) != 0) {
969 970 971 972 973 974
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
	return 0;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988
int spi_nbyte_read(int address, uint8_t *bytes, int len)
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
	return spi_send_command(sizeof(cmd), len, cmd, bytes);
}

/*
989
 * Read a part of the flash chip.
990
 * FIXME: Use the chunk code from Michael Karcher instead.
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
	int rc = 0;
	int i, j, starthere, lenhere;
	int page_size = flash->page_size;
	int toread;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
			rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

1028 1029
/*
 * Write a part of the flash chip.
1030
 * FIXME: Use the chunk code from Michael Karcher instead.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
int spi_write_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
	int rc = 0;
	int i, j, starthere, lenhere;
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
	 * in struct flashchip to do this properly. All chips using
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
	int page_size = flash->page_size;
	int towrite;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
			rc = spi_nbyte_program(starthere + j, buf + starthere - start + j, towrite);
			if (rc)
				break;
			while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

1075 1076 1077 1078 1079 1080
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
1081
/* real chunksize is 1, logical chunksize is 1 */
1082
int spi_chip_write_1(struct flashchip *flash, uint8_t *buf, int start, int len)
1083 1084 1085
{
	int i, result = 0;

1086
	for (i = start; i < start + len; i++) {
1087
		result = spi_byte_program(i, buf[i - start]);
1088 1089 1090 1091 1092 1093 1094 1095 1096
		if (result)
			return 1;
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
			programmer_delay(10);
	}

	return 0;
}

1097
int spi_aai_write(struct flashchip *flash, uint8_t *buf, int start, int len)
1098 1099
{
	uint32_t pos = start;
1100
	int result;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
1114 1115 1116
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
1128

1129
	switch (spi_programmer->type) {
1130
#if CONFIG_INTERNAL == 1
1131
#if defined(__i386__) || defined(__x86_64__)
1132
	case SPI_CONTROLLER_IT87XX:
1133
	case SPI_CONTROLLER_WBSIO:
1134
		msg_perr("%s: impossible with this SPI controller,"
1135
				" degrading to byte program\n", __func__);
1136
		return spi_chip_write_1(flash, buf, start, len);
1137
#endif
1138 1139 1140 1141
#endif
	default:
		break;
	}
1142

1143 1144 1145
	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
1146
	 * FIXME: Move this to generic code.
1147
	 */
1148
	/* The data sheet requires a start address with the low bit cleared. */
1149
	if (start % 2) {
1150 1151
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
1152 1153 1154
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
1155 1156 1157 1158 1159 1160 1161 1162
		cmds[1].writearr = (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(pos >> 16) & 0xff,
					(pos >> 8) & 0xff,
					(pos & 0xff),
					buf[pos - start],
					buf[pos - start + 1]
				};
1163 1164
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1165 1166 1167 1168 1169
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
1170 1171
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1172 1173 1174 1175 1176 1177 1178
	}


	result = spi_send_multicommand(cmds);
	if (result) {
		msg_cerr("%s failed during start command execution\n",
			 __func__);
1179 1180 1181
		/* FIXME: Should we send WRDI here as well to make sure the chip
		 * is not in AAI mode?
		 */
1182
		return result;
1183
	}
1184
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1185 1186 1187 1188 1189
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

1190 1191
	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
1192 1193
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
1194
		spi_send_command(JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
1195
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1196
			programmer_delay(10);
1197
	}
1198

1199 1200 1201
	/* Use WRDI to exit AAI mode. This needs to be done before issuing any
	 * other non-AAI command.
	 */
1202
	spi_write_disable();
1203

1204 1205
	/* Write remaining byte (if any). */
	if (pos < start + len) {
1206
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
1207 1208 1209
			return SPI_GENERIC_ERROR;
		pos += pos % 2;
	}
1210

1211 1212
	return 0;
}