spi25.c 32 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
29
#include "programmer.h"
30 31
#include "spi.h"

32
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
33
{
34
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
35 36 37
	int ret;
	int i;

38
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
39 40
	if (ret)
		return ret;
41
	msg_cspew("RDID returned");
42
	for (i = 0; i < bytes; i++)
43 44
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
45 46 47
	return 0;
}

48
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
49 50 51 52 53
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

54 55
	ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
			       readarr);
56 57
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
58
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
59 60 61
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
62 63
		ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
				       cmd, readarr);
64 65 66
	}
	if (ret)
		return ret;
67
	msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
68 69 70
	return 0;
}

71
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
72 73 74 75
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
76
	int i;
77

78
	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
79 80
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
81
		readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
82 83 84
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
85
		ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
86 87 88
	}
	if (ret)
		return ret;
89 90 91 92
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
93 94 95
	return 0;
}

96
int spi_write_enable(struct flashctx *flash)
97
{
98
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
99 100 101
	int result;

	/* Send WREN (Write Enable) */
102
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
103 104

	if (result)
105
		msg_cerr("%s failed\n", __func__);
106 107 108 109

	return result;
}

110
int spi_write_disable(struct flashctx *flash)
111
{
112
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
113 114

	/* Send WRDI (Write Disable) */
115
	return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
116 117
}

118
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
119 120 121 122 123
{
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

124
	if (spi_rdid(flash, readarr, bytes)) {
125
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
126
	}
127 128

	if (!oddparity(readarr[0]))
129
		msg_cdbg("RDID byte 0 parity violation. ");
130

131 132 133
	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
134 135
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
136
			msg_cdbg("RDID byte 1 parity violation. ");
137 138 139 140 141 142 143 144 145 146 147
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

148
	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

172
int probe_spi_rdid(struct flashctx *flash)
173 174 175 176
{
	return probe_spi_rdid_generic(flash, 3);
}

177
int probe_spi_rdid4(struct flashctx *flash)
178
{
179 180 181
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
182
	switch (flash->pgm->spi.type) {
183
#if CONFIG_INTERNAL == 1
184
#if defined(__i386__) || defined(__x86_64__)
185
	case SPI_CONTROLLER_IT87XX:
186
	case SPI_CONTROLLER_WBSIO:
187 188 189
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
190
#endif
191
#endif
192
	default:
193
		return probe_spi_rdid_generic(flash, 4);
194 195 196 197 198
	}

	return 0;
}

199
int probe_spi_rems(struct flashctx *flash)
200 201 202 203
{
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

204
	if (spi_rems(flash, readarr)) {
205
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
206
	}
207 208 209 210

	id1 = readarr[0];
	id2 = readarr[1];

211
	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

235
int probe_spi_res1(struct flashctx *flash)
236
{
237 238
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
239 240 241
	unsigned char readarr[3];
	uint32_t id2;

242 243
	/* We only want one-byte RES if RDID and REMS are unusable. */

244 245 246
	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
247
	if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
248 249 250 251 252 253 254
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
255 256
	if (!spi_rems(flash, readarr) &&
	    memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
257 258 259 260 261
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

262
	if (spi_res(flash, readarr, 1)) {
263
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
264
	}
265 266

	id2 = readarr[0];
267

268
	msg_cdbg("%s: id 0x%x\n", __func__, id2);
269

Stefan Tauner's avatar
Stefan Tauner committed
270
	if (id2 != flash->model_id)
271 272 273 274 275 276 277 278 279
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

280
int probe_spi_res2(struct flashctx *flash)
281 282 283 284
{
	unsigned char readarr[2];
	uint32_t id1, id2;

285
	if (spi_res(flash, readarr, 2)) {
286
		return 0;
Stefan Tauner's avatar
Stefan Tauner committed
287
	}
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->manufacture_id || id2 != flash->model_id)
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

304
uint8_t spi_read_status_register(struct flashctx *flash)
305
{
306
	static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
307 308 309 310 311
	/* FIXME: No workarounds for driver/hardware bugs in generic code. */
	unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
	int ret;

	/* Read Status Register */
312 313
	ret = spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd,
			       readarr);
314
	if (ret)
315
		msg_cerr("RDSR failed!\n");
316 317 318 319 320

	return readarr[0];
}

/* Prettyprint the status register. Common definitions. */
321
void spi_prettyprint_status_register_welwip(uint8_t status)
322 323 324 325 326 327 328 329
{
	msg_cdbg("Chip status register: Write Enable Latch (WEL) is "
		     "%sset\n", (status & (1 << 1)) ? "" : "not ");
	msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is "
		     "%sset\n", (status & (1 << 0)) ? "" : "not ");
}

/* Prettyprint the status register. Common definitions. */
330
void spi_prettyprint_status_register_bp3210(uint8_t status, int bp)
331
{
332 333 334 335 336 337 338 339 340 341 342 343 344 345
	switch (bp) {
	/* Fall through. */
	case 3:
		msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) "
			     "is %sset\n", (status & (1 << 5)) ? "" : "not ");
	case 2:
		msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) "
			     "is %sset\n", (status & (1 << 4)) ? "" : "not ");
	case 1:
		msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) "
			     "is %sset\n", (status & (1 << 3)) ? "" : "not ");
	case 0:
		msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) "
			     "is %sset\n", (status & (1 << 2)) ? "" : "not ");
346 347 348
	}
}

349 350
/* Prettyprint the status register. Unnamed bits. */
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
351
{
352 353
	msg_cdbg("Chip status register: Bit %i "
		 "is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
354 355
}

356
static void spi_prettyprint_status_register_common(uint8_t status)
357
{
358
	spi_prettyprint_status_register_bp3210(status, 3);
359 360 361
	spi_prettyprint_status_register_welwip(status);
}

362 363 364 365 366 367
/* Prettyprint the status register. Works for
 * ST M25P series
 * MX MX25L series
 */
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
368
	msg_cdbg("Chip status register: Status Register Write Disable "
369
		     "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
370
	msg_cdbg("Chip status register: Bit 6 is "
371 372 373 374 375 376
		     "%sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

void spi_prettyprint_status_register_sst25(uint8_t status)
{
377
	msg_cdbg("Chip status register: Block Protect Write Disable "
378
		     "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
379
	msg_cdbg("Chip status register: Auto Address Increment Programming "
380 381 382 383 384 385 386 387 388
		     "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

/* Prettyprint the status register. Works for
 * SST 25VF016
 */
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
389
	static const char *const bpt[] = {
390 391 392 393 394 395 396 397 398
		"none",
		"1F0000H-1FFFFFH",
		"1E0000H-1FFFFFH",
		"1C0000H-1FFFFFH",
		"180000H-1FFFFFH",
		"100000H-1FFFFFH",
		"all", "all"
	};
	spi_prettyprint_status_register_sst25(status);
399
	msg_cdbg("Resulting block protection : %s\n",
400 401 402 403 404
		     bpt[(status & 0x1c) >> 2]);
}

void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
405
	static const char *const bpt[] = {
406 407 408 409 410 411 412
		"none",
		"0x70000-0x7ffff",
		"0x60000-0x7ffff",
		"0x40000-0x7ffff",
		"all blocks", "all blocks", "all blocks", "all blocks"
	};
	spi_prettyprint_status_register_sst25(status);
413
	msg_cdbg("Resulting block protection : %s\n",
414 415 416
		bpt[(status & 0x1c) >> 2]);
}

417
int spi_prettyprint_status_register(struct flashctx *flash)
418 419 420
{
	uint8_t status;

421
	status = spi_read_status_register(flash);
422
	msg_cdbg("Chip status register is %02x\n", status);
423 424 425 426 427 428
	switch (flash->manufacture_id) {
	case ST_ID:
		if (((flash->model_id & 0xff00) == 0x2000) ||
		    ((flash->model_id & 0xff00) == 0x2500))
			spi_prettyprint_status_register_st_m25p(status);
		break;
429
	case MACRONIX_ID:
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		if ((flash->model_id & 0xff00) == 0x2000)
			spi_prettyprint_status_register_st_m25p(status);
		break;
	case SST_ID:
		switch (flash->model_id) {
		case 0x2541:
			spi_prettyprint_status_register_sst25vf016(status);
			break;
		case 0x8d:
		case 0x258d:
			spi_prettyprint_status_register_sst25vf040b(status);
			break;
		default:
			spi_prettyprint_status_register_sst25(status);
			break;
		}
		break;
	}
448
	return 0;
449 450
}

451
int spi_chip_erase_60(struct flashctx *flash)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
472
	result = spi_send_multicommand(flash, cmds);
473
	if (result) {
474
		msg_cerr("%s failed during command execution\n",
475 476 477 478 479 480 481
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
482
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
483
		programmer_delay(1000 * 1000);
484
	/* FIXME: Check the status register for errors. */
485 486 487
	return 0;
}

488
int spi_chip_erase_c7(struct flashctx *flash)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

509
	result = spi_send_multicommand(flash, cmds);
510
	if (result) {
511
		msg_cerr("%s failed during command execution\n", __func__);
512 513 514 515 516 517
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
518
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
519
		programmer_delay(1000 * 1000);
520
	/* FIXME: Check the status register for errors. */
521 522 523
	return 0;
}

524 525
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

551
	result = spi_send_multicommand(flash, cmds);
552
	if (result) {
553
		msg_cerr("%s failed during command execution at address 0x%x\n",
554 555 556 557 558 559
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
560
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
561
		programmer_delay(100 * 1000);
562
	/* FIXME: Check the status register for errors. */
563 564 565 566 567 568 569 570
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
571 572
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

598
	result = spi_send_multicommand(flash, cmds);
599
	if (result) {
600
		msg_cerr("%s failed during command execution at address 0x%x\n",
601 602 603 604 605 606
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
607
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
608
		programmer_delay(100 * 1000);
609
	/* FIXME: Check the status register for errors. */
610 611 612 613 614 615
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
616 617
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

643
	result = spi_send_multicommand(flash, cmds);
644
	if (result) {
645
		msg_cerr("%s failed during command execution at address 0x%x\n",
646 647 648 649 650 651
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
652
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
653
		programmer_delay(100 * 1000);
654
	/* FIXME: Check the status register for errors. */
655 656 657 658
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
659 660
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

686
	result = spi_send_multicommand(flash, cmds);
687
	if (result) {
688
		msg_cerr("%s failed during command execution at address 0x%x\n",
689 690 691 692 693 694
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
695
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
696
		programmer_delay(10 * 1000);
697
	/* FIXME: Check the status register for errors. */
698 699 700
	return 0;
}

701 702
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
703 704
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
705
		msg_cerr("%s called with incorrect arguments\n",
706 707 708 709 710 711
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

712 713
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
714 715
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
716
		msg_cerr("%s called with incorrect arguments\n",
717 718 719 720 721 722
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

Stefan Tauner's avatar
Stefan Tauner committed
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
	switch(opcode){
	case 0xff:
	case 0x00:
		/* Not specified, assuming "not supported". */
		return NULL;
	case 0x20:
		return &spi_block_erase_20;
	case 0x52:
		return &spi_block_erase_52;
	case 0x60:
		return &spi_block_erase_60;
	case 0xc7:
		return &spi_block_erase_c7;
	case 0xd7:
		return &spi_block_erase_d7;
	case 0xd8:
		return &spi_block_erase_d8;
	default:
		msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
			  "this at flashrom@flashrom.org\n", __func__, opcode);
		return NULL;
	}
}

749
int spi_write_status_enable(struct flashctx *flash)
750
{
751
	static const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
752 753 754
	int result;

	/* Send EWSR (Enable Write Status Register). */
755
	result = spi_send_command(flash, sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
756 757

	if (result)
758
		msg_cerr("%s failed\n", __func__);
759 760 761 762 763 764 765 766

	return result;
}

/*
 * This is according the SST25VF016 datasheet, who knows it is more
 * generic that this...
 */
767
static int spi_write_status_register_ewsr(struct flashctx *flash, int status)
768 769
{
	int result;
770
	int i = 0;
771 772
	struct spi_command cmds[] = {
	{
773
	/* WRSR requires either EWSR or WREN depending on chip type. */
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		.writecnt	= JEDEC_EWSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_EWSR },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

790
	result = spi_send_multicommand(flash, cmds);
791
	if (result) {
792
		msg_cerr("%s failed during command execution\n",
793
			__func__);
794 795 796 797
		/* No point in waiting for the command to complete if execution
		 * failed.
		 */
		return result;
798
	}
799 800 801 802 803
	/* WRSR performs a self-timed erase before the changes take effect.
	 * This may take 50-85 ms in most cases, and some chips apparently
	 * allow running RDSR only once. Therefore pick an initial delay of
	 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
	 */
804
	programmer_delay(100 * 1000);
805
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP) {
806 807 808 809 810 811 812
		if (++i > 490) {
			msg_cerr("Error: WIP bit after WRSR never cleared\n");
			return TIMEOUT_ERROR;
		}
		programmer_delay(10 * 1000);
	}
	return 0;
813 814
}

815
static int spi_write_status_register_wren(struct flashctx *flash, int status)
816 817
{
	int result;
818
	int i = 0;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	struct spi_command cmds[] = {
	{
	/* WRSR requires either EWSR or WREN depending on chip type. */
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

838
	result = spi_send_multicommand(flash, cmds);
839 840 841
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
842 843 844 845
		/* No point in waiting for the command to complete if execution
		 * failed.
		 */
		return result;
846
	}
847 848 849 850 851
	/* WRSR performs a self-timed erase before the changes take effect.
	 * This may take 50-85 ms in most cases, and some chips apparently
	 * allow running RDSR only once. Therefore pick an initial delay of
	 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
	 */
852
	programmer_delay(100 * 1000);
853
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP) {
854 855 856 857 858 859 860
		if (++i > 490) {
			msg_cerr("Error: WIP bit after WRSR never cleared\n");
			return TIMEOUT_ERROR;
		}
		programmer_delay(10 * 1000);
	}
	return 0;
861 862
}

863
int spi_write_status_register(struct flashctx *flash, int status)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
{
	int ret = 1;

	if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
		msg_cdbg("Missing status register write definition, assuming "
			 "EWSR is needed\n");
		flash->feature_bits |= FEATURE_WRSR_EWSR;
	}
	if (flash->feature_bits & FEATURE_WRSR_WREN)
		ret = spi_write_status_register_wren(flash, status);
	if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR))
		ret = spi_write_status_register_ewsr(flash, status);
	return ret;
}

879 880
int spi_byte_program(struct flashctx *flash, unsigned int addr,
		     uint8_t databyte)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

907
	result = spi_send_multicommand(flash, cmds);
908
	if (result) {
909
		msg_cerr("%s failed during command execution at address 0x%x\n",
910 911 912 913 914
			__func__, addr);
	}
	return result;
}

915 916
int spi_nbyte_program(struct flashctx *flash, unsigned int addr, uint8_t *bytes,
		      unsigned int len)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
945
		msg_cerr("%s called for zero-length write\n", __func__);
946 947 948
		return 1;
	}
	if (len > 256) {
949
		msg_cerr("%s called for too long a write\n", __func__);
950 951 952 953 954
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

955
	result = spi_send_multicommand(flash, cmds);
956
	if (result) {
957
		msg_cerr("%s failed during command execution at address 0x%x\n",
958 959 960 961 962
			__func__, addr);
	}
	return result;
}

963 964 965 966
/* A generic brute-force block protection disable works like this:
 * Write 0x00 to the status register. Check if any locks are still set (that
 * part is chip specific). Repeat once.
 */
967
int spi_disable_blockprotect(struct flashctx *flash)
968 969 970 971
{
	uint8_t status;
	int result;

972
	status = spi_read_status_register(flash);
973 974 975 976 977 978 979 980 981 982
	/* If block protection is disabled, stop here. */
	if ((status & 0x3c) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	result = spi_write_status_register(flash, status & ~0x3c);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
983
	status = spi_read_status_register(flash);
984
	if ((status & 0x3c) != 0) {
985 986 987 988 989 990
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
	return 0;
}

991 992
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
		   unsigned int len)
993 994 995 996 997 998 999 1000 1001
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
1002
	return spi_send_command(flash, sizeof(cmd), len, cmd, bytes);
1003 1004 1005
}

/*
1006
 * Read a part of the flash chip.
1007
 * FIXME: Use the chunk code from Michael Karcher instead.
1008 1009
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
1010 1011
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len, unsigned int chunksize)
1012 1013
{
	int rc = 0;
1014 1015
	unsigned int i, j, starthere, lenhere, toread;
	unsigned int page_size = flash->page_size;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
1034
			rc = spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

1045 1046
/*
 * Write a part of the flash chip.
1047
 * FIXME: Use the chunk code from Michael Karcher instead.
1048 1049
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
1050 1051
int spi_write_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		      unsigned int len, unsigned int chunksize)
1052 1053
{
	int rc = 0;
1054
	unsigned int i, j, starthere, lenhere, towrite;
1055
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
1056
	 * in struct flashctx to do this properly. All chips using
1057 1058 1059
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
1060
	unsigned int page_size = flash->page_size;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
1079
			rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
1080 1081
			if (rc)
				break;
1082
			while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
1083 1084 1085 1086 1087 1088 1089 1090 1091
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

1092 1093 1094 1095 1096 1097
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
1098
/* real chunksize is 1, logical chunksize is 1 */
1099 1100
int spi_chip_write_1(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len)
1101
{
1102 1103
	unsigned int i;
	int result = 0;
1104

1105
	for (i = start; i < start + len; i++) {
1106
		result = spi_byte_program(flash, i, buf[i - start]);
1107 1108
		if (result)
			return 1;
1109
		while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
1110 1111 1112 1113 1114 1115
			programmer_delay(10);
	}

	return 0;
}

1116 1117
int spi_aai_write(struct flashctx *flash, uint8_t *buf, unsigned int start,
		  unsigned int len)
1118 1119
{
	uint32_t pos = start;
1120
	int result;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
1134 1135 1136
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
1148

1149
	switch (flash->pgm->spi.type) {
1150
#if CONFIG_INTERNAL == 1
1151
#if defined(__i386__) || defined(__x86_64__)
1152
	case SPI_CONTROLLER_IT87XX:
1153
	case SPI_CONTROLLER_WBSIO:
1154
		msg_perr("%s: impossible with this SPI controller,"
1155
				" degrading to byte program\n", __func__);
1156
		return spi_chip_write_1(flash, buf, start, len);
1157
#endif
1158 1159 1160 1161
#endif
	default:
		break;
	}
1162

1163 1164 1165
	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
1166
	 * FIXME: Move this to generic code.
1167
	 */
1168
	/* The data sheet requires a start address with the low bit cleared. */
1169
	if (start % 2) {
1170 1171
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
1172 1173 1174
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
1175 1176 1177 1178 1179 1180 1181 1182
		cmds[1].writearr = (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
					(pos >> 16) & 0xff,
					(pos >> 8) & 0xff,
					(pos & 0xff),
					buf[pos - start],
					buf[pos - start + 1]
				};
1183 1184
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1185 1186 1187 1188 1189
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
1190 1191
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
1192 1193 1194
	}


1195
	result = spi_send_multicommand(flash, cmds);
1196 1197 1198
	if (result) {
		msg_cerr("%s failed during start command execution\n",
			 __func__);
1199 1200 1201
		/* FIXME: Should we send WRDI here as well to make sure the chip
		 * is not in AAI mode?
		 */
1202
		return result;
1203
	}
1204
	while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
1205 1206 1207 1208 1209
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

1210 1211
	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
1212 1213
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
1214 1215 1216
		spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0,
				 cmd, NULL);
		while (spi_read_status_register(flash) & JEDEC_RDSR_BIT_WIP)
1217
			programmer_delay(10);
1218
	}
1219

1220 1221 1222
	/* Use WRDI to exit AAI mode. This needs to be done before issuing any
	 * other non-AAI command.
	 */
1223
	spi_write_disable(flash);
1224

1225 1226
	/* Write remaining byte (if any). */
	if (pos < start + len) {
1227
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
1228 1229 1230
			return SPI_GENERIC_ERROR;
		pos += pos % 2;
	}
1231

1232 1233
	return 0;
}