spi25.c 37.2 KB
Newer Older
1 2 3
/*
 * This file is part of the flashrom project.
 *
4
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
29
#include "programmer.h"
30 31 32 33 34 35 36 37 38 39 40 41 42
#include "spi.h"

void spi_prettyprint_status_register(struct flashchip *flash);

static int spi_rdid(unsigned char *readarr, int bytes)
{
	const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
	int ret;
	int i;

	ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
	if (ret)
		return ret;
43
	msg_cspew("RDID returned");
44
	for (i = 0; i < bytes; i++)
45 46
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	return 0;
}

static int spi_rems(unsigned char *readarr)
{
	unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
	uint32_t readaddr;
	int ret;

	ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
		ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
	}
	if (ret)
		return ret;
67
	msg_cspew("REMS returned %02x %02x. ", readarr[0], readarr[1]);
68 69 70
	return 0;
}

71
static int spi_res(unsigned char *readarr, int bytes)
72 73 74 75
{
	unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
	uint32_t readaddr;
	int ret;
76
	int i;
77

78
	ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
79 80 81 82 83 84
	if (ret == SPI_INVALID_ADDRESS) {
		/* Find the lowest even address allowed for reads. */
		readaddr = (spi_get_valid_read_addr() + 1) & ~1;
		cmd[1] = (readaddr >> 16) & 0xff,
		cmd[2] = (readaddr >> 8) & 0xff,
		cmd[3] = (readaddr >> 0) & 0xff,
85
		ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
86 87 88
	}
	if (ret)
		return ret;
89 90 91 92
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
93 94 95 96 97 98 99 100 101 102 103 104
	return 0;
}

int spi_write_enable(void)
{
	const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
	int result;

	/* Send WREN (Write Enable) */
	result = spi_send_command(sizeof(cmd), 0, cmd, NULL);

	if (result)
105
		msg_cerr("%s failed\n", __func__);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

	return result;
}

int spi_write_disable(void)
{
	const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };

	/* Send WRDI (Write Disable) */
	return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}

static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
{
	unsigned char readarr[4];
	uint32_t id1;
	uint32_t id2;

	if (spi_rdid(readarr, bytes))
		return 0;

	if (!oddparity(readarr[0]))
128
		msg_cdbg("RDID byte 0 parity violation. ");
129

130 131 132
	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
133 134
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
135
			msg_cdbg("RDID byte 1 parity violation. ");
136 137 138 139 140 141 142 143 144 145 146
		id1 = (readarr[0] << 8) | readarr[1];
		id2 = readarr[2];
		if (bytes > 3) {
			id2 <<= 8;
			id2 |= readarr[3];
		}
	} else {
		id1 = readarr[0];
		id2 = (readarr[1] << 8) | readarr[2];
	}

147
	msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

int probe_spi_rdid(struct flashchip *flash)
{
	return probe_spi_rdid_generic(flash, 3);
}

int probe_spi_rdid4(struct flashchip *flash)
{
178 179 180
	/* Some SPI controllers do not support commands with writecnt=1 and
	 * readcnt=4.
	 */
181
	switch (spi_controller) {
182
#if CONFIG_INTERNAL == 1
183
#if defined(__i386__) || defined(__x86_64__)
184
	case SPI_CONTROLLER_IT87XX:
185
	case SPI_CONTROLLER_WBSIO:
186 187 188
		msg_cinfo("4 byte RDID not supported on this SPI controller\n");
		return 0;
		break;
189
#endif
190
#endif
191
	default:
192
		return probe_spi_rdid_generic(flash, 4);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	}

	return 0;
}

int probe_spi_rems(struct flashchip *flash)
{
	unsigned char readarr[JEDEC_REMS_INSIZE];
	uint32_t id1, id2;

	if (spi_rems(readarr))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

209
	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	if (id1 == flash->manufacture_id && id2 == flash->model_id) {
		/* Print the status register to tell the
		 * user about possible write protection.
		 */
		spi_prettyprint_status_register(flash);

		return 1;
	}

	/* Test if this is a pure vendor match. */
	if (id1 == flash->manufacture_id &&
	    GENERIC_DEVICE_ID == flash->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == flash->manufacture_id &&
	    id1 != 0xff)
		return 1;

	return 0;
}

233
int probe_spi_res1(struct flashchip *flash)
234 235 236 237 238 239
{
	unsigned char readarr[3];
	uint32_t id2;
	const unsigned char allff[] = {0xff, 0xff, 0xff};
	const unsigned char all00[] = {0x00, 0x00, 0x00};

240 241
	/* We only want one-byte RES if RDID and REMS are unusable. */

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) &&
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

259
	if (spi_res(readarr, 1))
260 261 262
		return 0;

	id2 = readarr[0];
263

264
	msg_cdbg("%s: id 0x%x\n", __func__, id2);
265

266 267 268 269 270 271 272 273 274 275
	if (id2 != flash->model_id)
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
int probe_spi_res2(struct flashchip *flash)
{
	unsigned char readarr[2];
	uint32_t id1, id2;

	if (spi_res(readarr, 2))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);

	if (id1 != flash->manufacture_id || id2 != flash->model_id)
		return 0;

	/* Print the status register to tell the
	 * user about possible write protection.
	 */
	spi_prettyprint_status_register(flash);
	return 1;
}

299 300 301 302 303 304 305 306 307 308
uint8_t spi_read_status_register(void)
{
	const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
	/* FIXME: No workarounds for driver/hardware bugs in generic code. */
	unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
	int ret;

	/* Read Status Register */
	ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
	if (ret)
309
		msg_cerr("RDSR failed!\n");
310 311 312 313 314

	return readarr[0];
}

/* Prettyprint the status register. Common definitions. */
315 316 317 318 319 320 321 322 323 324
static void spi_prettyprint_status_register_welwip(uint8_t status)
{
	msg_cdbg("Chip status register: Write Enable Latch (WEL) is "
		     "%sset\n", (status & (1 << 1)) ? "" : "not ");
	msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is "
		     "%sset\n", (status & (1 << 0)) ? "" : "not ");
}

/* Prettyprint the status register. Common definitions. */
static void spi_prettyprint_status_register_common(uint8_t status)
325
{
326
	msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
327
		     "%sset\n", (status & (1 << 5)) ? "" : "not ");
328
	msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) is "
329
		     "%sset\n", (status & (1 << 4)) ? "" : "not ");
330
	msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
331
		     "%sset\n", (status & (1 << 3)) ? "" : "not ");
332
	msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
333
		     "%sset\n", (status & (1 << 2)) ? "" : "not ");
334
	spi_prettyprint_status_register_welwip(status);
335 336
}

337 338 339 340 341 342 343 344 345 346
/* Prettyprint the status register. Works for
 * AMIC A25L series
 */
void spi_prettyprint_status_register_amic_a25l(uint8_t status)
{
	msg_cdbg("Chip status register: Status Register Write Disable "
		     "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/* Prettyprint the status register. Common definitions. */
static void spi_prettyprint_status_register_at25_srplepewpp(uint8_t status)
{
	msg_cdbg("Chip status register: Sector Protection Register Lock (SRPL) "
		 "is %sset\n", (status & (1 << 7)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 6 "
		 "is %sset\n", (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Erase/Program Error (EPE) "
		 "is %sset\n", (status & (1 << 5)) ? "" : "not ");
	msg_cdbg("Chip status register: WP# pin (WPP) "
		 "is %sactive\n", (status & (1 << 4)) ? "not " : "");
}

int spi_prettyprint_status_register_at25df(struct flashchip *flash)
{
	uint8_t status;

	status = spi_read_status_register();
	msg_cdbg("Chip status register is %02x\n", status);

	spi_prettyprint_status_register_at25_srplepewpp(status);
	msg_cdbg("Chip status register: Software Protection Status (SWP): ");
	switch (status & (3 << 2)) {
	case 0x0 << 2:
		msg_cdbg("no sectors are protected\n");
		break;
	case 0x1 << 2:
		msg_cdbg("some sectors are protected\n");
		/* FIXME: Read individual Sector Protection Registers. */
		break;
	case 0x3 << 2:
		msg_cdbg("all sectors are protected\n");
		break;
	default:
		msg_cdbg("reserved for future use\n");
		break;
	}
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25df_sec(struct flashchip *flash)
{
	/* FIXME: We should check the security lockdown. */
	msg_cdbg("Ignoring security lockdown (if present)\n");
	msg_cdbg("Ignoring status register byte 2\n");
	return spi_prettyprint_status_register_at25df(flash);
}

int spi_prettyprint_status_register_at25f(struct flashchip *flash)
{
	uint8_t status;

	status = spi_read_status_register();
	msg_cdbg("Chip status register is %02x\n", status);

	spi_prettyprint_status_register_at25_srplepewpp(status);
	msg_cdbg("Chip status register: Bit 3 "
		 "is %sset\n", (status & (1 << 3)) ? "" : "not ");
	msg_cdbg("Chip status register: Block Protect 0 (BP0) is "
		 "%sset, %s sectors are protected\n",
		 (status & (1 << 2)) ? "" : "not ",
		 (status & (1 << 2)) ? "all" : "no");
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25fs010(struct flashchip *flash)
{
	uint8_t status;

	status = spi_read_status_register();
	msg_cdbg("Chip status register is %02x\n", status);

	msg_cdbg("Chip status register: Status Register Write Protect (WPEN) "
		 "is %sset\n", (status & (1 << 7)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is "
		 "%sset\n", (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
		 "%sset\n", (status & (1 << 5)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 4 is "
		 "%sset\n", (status & (1 << 4)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
		 "%sset\n", (status & (1 << 3)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
		 "%sset\n", (status & (1 << 2)) ? "" : "not ");
	/* FIXME: Pretty-print detailed sector protection status. */
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

int spi_prettyprint_status_register_at25fs040(struct flashchip *flash)
{
	uint8_t status;

	status = spi_read_status_register();
	msg_cdbg("Chip status register is %02x\n", status);

	msg_cdbg("Chip status register: Status Register Write Protect (WPEN) "
		 "is %sset\n", (status & (1 << 7)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is "
		 "%sset\n", (status & (1 << 6)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
		 "%sset\n", (status & (1 << 5)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) is "
		 "%sset\n", (status & (1 << 4)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
		 "%sset\n", (status & (1 << 3)) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
		 "%sset\n", (status & (1 << 2)) ? "" : "not ");
	/* FIXME: Pretty-print detailed sector protection status. */
	spi_prettyprint_status_register_welwip(status);
	return 0;
}

462 463 464 465 466 467
/* Prettyprint the status register. Works for
 * ST M25P series
 * MX MX25L series
 */
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
468
	msg_cdbg("Chip status register: Status Register Write Disable "
469
		     "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
470
	msg_cdbg("Chip status register: Bit 6 is "
471 472 473 474 475 476
		     "%sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

void spi_prettyprint_status_register_sst25(uint8_t status)
{
477
	msg_cdbg("Chip status register: Block Protect Write Disable "
478
		     "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
479
	msg_cdbg("Chip status register: Auto Address Increment Programming "
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		     "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
	spi_prettyprint_status_register_common(status);
}

/* Prettyprint the status register. Works for
 * SST 25VF016
 */
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
	const char *bpt[] = {
		"none",
		"1F0000H-1FFFFFH",
		"1E0000H-1FFFFFH",
		"1C0000H-1FFFFFH",
		"180000H-1FFFFFH",
		"100000H-1FFFFFH",
		"all", "all"
	};
	spi_prettyprint_status_register_sst25(status);
499
	msg_cdbg("Resulting block protection : %s\n",
500 501 502 503 504 505 506 507 508 509 510 511 512
		     bpt[(status & 0x1c) >> 2]);
}

void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
	const char *bpt[] = {
		"none",
		"0x70000-0x7ffff",
		"0x60000-0x7ffff",
		"0x40000-0x7ffff",
		"all blocks", "all blocks", "all blocks", "all blocks"
	};
	spi_prettyprint_status_register_sst25(status);
513
	msg_cdbg("Resulting block protection : %s\n",
514 515 516 517 518 519 520 521
		bpt[(status & 0x1c) >> 2]);
}

void spi_prettyprint_status_register(struct flashchip *flash)
{
	uint8_t status;

	status = spi_read_status_register();
522
	msg_cdbg("Chip status register is %02x\n", status);
523
	switch (flash->manufacture_id) {
524 525 526 527
	case AMIC_ID:
		if ((flash->model_id & 0xff00) == 0x2000)
		    spi_prettyprint_status_register_amic_a25l(status);
		break;
528 529 530 531 532
	case ST_ID:
		if (((flash->model_id & 0xff00) == 0x2000) ||
		    ((flash->model_id & 0xff00) == 0x2500))
			spi_prettyprint_status_register_st_m25p(status);
		break;
533
	case MACRONIX_ID:
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		if ((flash->model_id & 0xff00) == 0x2000)
			spi_prettyprint_status_register_st_m25p(status);
		break;
	case SST_ID:
		switch (flash->model_id) {
		case 0x2541:
			spi_prettyprint_status_register_sst25vf016(status);
			break;
		case 0x8d:
		case 0x258d:
			spi_prettyprint_status_register_sst25vf040b(status);
			break;
		default:
			spi_prettyprint_status_register_sst25(status);
			break;
		}
		break;
	}
}

int spi_chip_erase_60(struct flashchip *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_60_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_60 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
	
	result = spi_send_multicommand(cmds);
	if (result) {
577
		msg_cerr("%s failed during command execution\n",
578 579 580 581 582 583 584 585 586 587
			__func__);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(1000 * 1000);
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
588
		msg_cerr("ERASE FAILED!\n");
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		return -1;
	}
	return 0;
}

int spi_chip_erase_c7(struct flashchip *flash)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_CE_C7_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_CE_C7 },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
617
		msg_cerr("%s failed during command execution\n", __func__);
618 619 620 621 622 623 624 625 626
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 1-85 s, so wait in 1 s steps.
	 */
	/* FIXME: We assume spi_read_status_register will never fail. */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(1000 * 1000);
	if (check_erased_range(flash, 0, flash->total_size * 1024)) {
627
		msg_cerr("ERASE FAILED!\n");
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		return -1;
	}
	return 0;
}

int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_52_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_52,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
661
		msg_cerr("%s failed during command execution at address 0x%x\n",
662 663 664 665 666 667 668 669 670
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
671
		msg_cerr("ERASE FAILED!\n");
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		return -1;
	}
	return 0;
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D8_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D8,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
710
		msg_cerr("%s failed during command execution at address 0x%x\n",
711 712 713 714 715 716 717 718 719
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
720
		msg_cerr("ERASE FAILED!\n");
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		return -1;
	}
	return 0;
}

/* Block size is usually
 * 4k for PMC
 */
int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BE_D7_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BE_D7,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
757
		msg_cerr("%s failed during command execution at address 0x%x\n",
758 759 760 761 762 763 764 765 766
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 100-4000 ms, so wait in 100 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(100 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
767
		msg_cerr("ERASE FAILED!\n");
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		return -1;
	}
	return 0;
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_SE_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_SE,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff)
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
802
		msg_cerr("%s failed during command execution at address 0x%x\n",
803 804 805 806 807 808 809 810 811
			__func__, addr);
		return result;
	}
	/* Wait until the Write-In-Progress bit is cleared.
	 * This usually takes 15-800 ms, so wait in 10 ms steps.
	 */
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
		programmer_delay(10 * 1000);
	if (check_erased_range(flash, addr, blocklen)) {
812
		msg_cerr("ERASE FAILED!\n");
813 814 815 816 817 818 819 820
		return -1;
	}
	return 0;
}

int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
821
		msg_cerr("%s called with incorrect arguments\n",
822 823 824 825 826 827 828 829 830
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
831
		msg_cerr("%s called with incorrect arguments\n",
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

int spi_write_status_enable(void)
{
	const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
	int result;

	/* Send EWSR (Enable Write Status Register). */
	result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);

	if (result)
847
		msg_cerr("%s failed\n", __func__);
848 849 850 851 852 853 854 855

	return result;
}

/*
 * This is according the SST25VF016 datasheet, who knows it is more
 * generic that this...
 */
856
static int spi_write_status_register_ewsr(struct flashchip *flash, int status)
857 858 859 860
{
	int result;
	struct spi_command cmds[] = {
	{
861
	/* WRSR requires either EWSR or WREN depending on chip type. */
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		.writecnt	= JEDEC_EWSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_EWSR },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
880
		msg_cerr("%s failed during command execution\n",
881 882
			__func__);
	}
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	/* WRSR performs a self-timed erase before the changes take effect. */
	programmer_delay(100 * 1000);
	return result;
}

static int spi_write_status_register_wren(struct flashchip *flash, int status)
{
	int result;
	struct spi_command cmds[] = {
	{
	/* WRSR requires either EWSR or WREN depending on chip type. */
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_WRSR_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
		msg_cerr("%s failed during command execution\n",
			__func__);
	}
	/* WRSR performs a self-timed erase before the changes take effect. */
	programmer_delay(100 * 1000);
917 918 919
	return result;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static int spi_write_status_register(struct flashchip *flash, int status)
{
	int ret = 1;

	if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
		msg_cdbg("Missing status register write definition, assuming "
			 "EWSR is needed\n");
		flash->feature_bits |= FEATURE_WRSR_EWSR;
	}
	if (flash->feature_bits & FEATURE_WRSR_WREN)
		ret = spi_write_status_register_wren(flash, status);
	if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR))
		ret = spi_write_status_register_ewsr(flash, status);
	return ret;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
int spi_byte_program(int addr, uint8_t databyte)
{
	int result;
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_BYTE_PROGRAM,
					(addr >> 16) & 0xff,
					(addr >> 8) & 0xff,
					(addr & 0xff),
					databyte
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	result = spi_send_multicommand(cmds);
	if (result) {
965
		msg_cerr("%s failed during command execution at address 0x%x\n",
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
			__func__, addr);
	}
	return result;
}

int spi_nbyte_program(int addr, uint8_t *bytes, int len)
{
	int result;
	/* FIXME: Switch to malloc based on len unless that kills speed. */
	unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
		JEDEC_BYTE_PROGRAM,
		(addr >> 16) & 0xff,
		(addr >> 8) & 0xff,
		(addr >> 0) & 0xff,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
		.writearr	= cmd,
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};

	if (!len) {
1000
		msg_cerr("%s called for zero-length write\n", __func__);
1001 1002 1003
		return 1;
	}
	if (len > 256) {
1004
		msg_cerr("%s called for too long a write\n", __func__);
1005 1006 1007 1008 1009 1010 1011
		return 1;
	}

	memcpy(&cmd[4], bytes, len);

	result = spi_send_multicommand(cmds);
	if (result) {
1012
		msg_cerr("%s failed during command execution at address 0x%x\n",
1013 1014 1015 1016 1017
			__func__, addr);
	}
	return result;
}

1018 1019 1020 1021
/* A generic brute-force block protection disable works like this:
 * Write 0x00 to the status register. Check if any locks are still set (that
 * part is chip specific). Repeat once.
 */
1022
int spi_disable_blockprotect(struct flashchip *flash)
1023 1024 1025 1026 1027
{
	uint8_t status;
	int result;

	status = spi_read_status_register();
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	/* If block protection is disabled, stop here. */
	if ((status & 0x3c) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	result = spi_write_status_register(flash, status & ~0x3c);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
	status = spi_read_status_register();
1039
	if ((status & 0x3c) != 0) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
	return 0;
}

int spi_disable_blockprotect_at25df(struct flashchip *flash)
{
	uint8_t status;
	int result;

	status = spi_read_status_register();
	/* If block protection is disabled, stop here. */
	if ((status & (3 << 2)) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	if (status & (1 << 7)) {
		msg_cdbg("Need to disable Sector Protection Register Lock\n");
		if ((status & (1 << 4)) == 0) {
			msg_cerr("WP# pin is active, disabling "
				 "write protection is impossible.\n");
			return 1;
		}
		/* All bits except bit 7 (SPRL) are readonly. */
		result = spi_write_status_register(flash, status & ~(1 << 7));
1066
		if (result) {
1067
			msg_cerr("spi_write_status_register failed\n");
1068 1069
			return result;
		}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		
	}
	/* Global unprotect. Make sure to mask SPRL as well. */
	result = spi_write_status_register(flash, status & ~0xbc);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
	status = spi_read_status_register();
	if ((status & (3 << 2)) != 0) {
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
	return 0;
}

int spi_disable_blockprotect_at25df_sec(struct flashchip *flash)
{
	/* FIXME: We should check the security lockdown. */
	msg_cinfo("Ignoring security lockdown (if present)\n");
	return spi_disable_blockprotect_at25df(flash);
}

int spi_disable_blockprotect_at25f(struct flashchip *flash)
{
	/* spi_disable_blockprotect_at25df is not really the right way to do
	 * this, but the side effects of said function work here as well.
	 */
	return spi_disable_blockprotect_at25df(flash);
}

int spi_disable_blockprotect_at25fs010(struct flashchip *flash)
{
	uint8_t status;
	int result;

	status = spi_read_status_register();
	/* If block protection is disabled, stop here. */
	if ((status & 0x6c) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	if (status & (1 << 7)) {
		msg_cdbg("Need to disable Status Register Write Protect\n");
		/* Clear bit 7 (WPEN). */
		result = spi_write_status_register(flash, status & ~(1 << 7));
		if (result) {
			msg_cerr("spi_write_status_register failed\n");
			return result;
		}
	}
	/* Global unprotect. Make sure to mask WPEN as well. */
	result = spi_write_status_register(flash, status & ~0xec);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
	status = spi_read_status_register();
	if ((status & 0x6c) != 0) {
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
	return 0;
}
int spi_disable_blockprotect_at25fs040(struct flashchip *flash)
{
	uint8_t status;
	int result;

	status = spi_read_status_register();
	/* If block protection is disabled, stop here. */
	if ((status & 0x7c) == 0)
		return 0;

	msg_cdbg("Some block protection in effect, disabling\n");
	if (status & (1 << 7)) {
		msg_cdbg("Need to disable Status Register Write Protect\n");
		/* Clear bit 7 (WPEN). */
		result = spi_write_status_register(flash, status & ~(1 << 7));
		if (result) {
			msg_cerr("spi_write_status_register failed\n");
			return result;
1152
		}
1153
	}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/* Global unprotect. Make sure to mask WPEN as well. */
	result = spi_write_status_register(flash, status & ~0xfc);
	if (result) {
		msg_cerr("spi_write_status_register failed\n");
		return result;
	}
	status = spi_read_status_register();
	if ((status & 0x7c) != 0) {
		msg_cerr("Block protection could not be disabled!\n");
		return 1;
	}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	return 0;
}

int spi_nbyte_read(int address, uint8_t *bytes, int len)
{
	const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
		JEDEC_READ,
		(address >> 16) & 0xff,
		(address >> 8) & 0xff,
		(address >> 0) & 0xff,
	};

	/* Send Read */
	return spi_send_command(sizeof(cmd), len, cmd, bytes);
}

/*
1182
 * Read a part of the flash chip.
1183
 * FIXME: Use the chunk code from Michael Karcher instead.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
 * Each page is read separately in chunks with a maximum size of chunksize.
 */
int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
	int rc = 0;
	int i, j, starthere, lenhere;
	int page_size = flash->page_size;
	int toread;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			toread = min(chunksize, lenhere - j);
			rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
			if (rc)
				break;
		}
		if (rc)
			break;
	}

	return rc;
}

1221 1222
/*
 * Write a part of the flash chip.
1223
 * FIXME: Use the chunk code from Michael Karcher instead.
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
int spi_write_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
	int rc = 0;
	int i, j, starthere, lenhere;
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
	 * in struct flashchip to do this properly. All chips using
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
	int page_size = flash->page_size;
	int towrite;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			towrite = min(chunksize, lenhere - j);
			rc = spi_nbyte_program(starthere + j, buf + starthere - start + j, towrite);
			if (rc)
				break;
			while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
				programmer_delay(10);
		}
		if (rc)
			break;
	}

	return rc;
}

1268 1269 1270 1271 1272 1273
/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
1274 1275
/* real chunksize is 1, logical chunksize is 1 */
int spi_chip_write_1_new(struct flashchip *flash, uint8_t *buf, int start, int len)
1276 1277 1278
{
	int i, result = 0;

1279
	for (i = start; i < start + len; i++) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		result = spi_byte_program(i, buf[i]);
		if (result)
			return 1;
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
			programmer_delay(10);
	}

	return 0;
}

1290
int spi_chip_write_1(struct flashchip *flash, uint8_t *buf)
1291
{
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	/* Erase first */
	msg_cinfo("Erasing flash before programming... ");
	if (erase_flash(flash)) {
		msg_cerr("ERASE FAILED!\n");
		return -1;
	}
	msg_cinfo("done.\n");

	return spi_chip_write_1_new(flash, buf, 0, flash->total_size * 1024);
}

1303
int spi_aai_write_new(struct flashchip *flash, uint8_t *buf, int start, int len)
1304 1305
{
	uint32_t pos = start;
1306
	int result;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};
	struct spi_command cmds[] = {
	{
		.writecnt	= JEDEC_WREN_OUTSIZE,
		.writearr	= (const unsigned char[]){ JEDEC_WREN },
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
		.writearr	= (const unsigned char[]){
					JEDEC_AAI_WORD_PROGRAM,
1320 1321 1322
					(start >> 16) & 0xff,
					(start >> 8) & 0xff,
					(start & 0xff),
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
					buf[0],
					buf[1]
				},
		.readcnt	= 0,
		.readarr	= NULL,
	}, {
		.writecnt	= 0,
		.writearr	= NULL,
		.readcnt	= 0,
		.readarr	= NULL,
	}};
1334 1335

	switch (spi_controller) {
1336
#if CONFIG_INTERNAL == 1
1337
#if defined(__i386__) || defined(__x86_64__)
1338
	case SPI_CONTROLLER_IT87XX:
1339
	case SPI_CONTROLLER_WBSIO:
1340
		msg_perr("%s: impossible with this SPI controller,"
1341
				" degrading to byte program\n", __func__);
1342
		return spi_chip_write_1_new(flash, buf, start, len);
1343
#endif
1344 1345 1346 1347
#endif
	default:
		break;
	}
1348

1349 1350 1351 1352
	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
	 */
1353
	/* The data sheet requires a start address with the low bit cleared. */
1354
	if (start % 2) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
		return SPI_GENERIC_ERROR;
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
		return SPI_GENERIC_ERROR;
	}


	result = spi_send_multicommand(cmds);
	if (result) {
		msg_cerr("%s failed during start command execution\n",
			 __func__);
1371 1372 1373
		/* FIXME: Should we send WRDI here as well to make sure the chip
		 * is not in AAI mode?
		 */
1374
		return result;
1375
	}
1376
	while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1377 1378 1379 1380 1381
		programmer_delay(10);

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

1382
	while (pos < start + len) {
1383 1384 1385
		cmd[1] = buf[pos++];
		cmd[2] = buf[pos++];
		spi_send_command(JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
1386
		while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1387
			programmer_delay(10);
1388
	}
1389 1390

	/* Use WRDI to exit AAI mode. */
1391 1392 1393
	spi_write_disable();
	return 0;
}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

int spi_aai_write(struct flashchip *flash, uint8_t *buf)
{
	/* Erase first */
	msg_cinfo("Erasing flash before programming... ");
	if (erase_flash(flash)) {
		msg_cerr("ERASE FAILED!\n");
		return -1;
	}
	msg_cinfo("done.\n");

	return spi_aai_write_new(flash, buf, 0, flash->total_size * 1024);
}