dediprog.c 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2010 Carl-Daniel Hailfinger
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

20
#include <stdio.h>
21 22 23
#include <string.h>
#include <usb.h>
#include "flash.h"
24
#include "chipdrivers.h"
25
#include "programmer.h"
26 27
#include "spi.h"

28
#define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z)
29
#define DEFAULT_TIMEOUT 3000
30
static usb_dev_handle *dediprog_handle;
31
static int dediprog_firmwareversion;
32
static int dediprog_endpoint;
33

34 35 36
#if 0
/* Might be useful for other pieces of code as well. */
static void print_hex(void *buf, size_t len)
37 38 39 40 41 42
{
	size_t i;

	for (i = 0; i < len; i++)
		msg_pdbg(" %02x", ((uint8_t *)buf)[i]);
}
43
#endif
44

45 46
/* Might be useful for other USB devices as well. static for now. */
static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
{
	struct usb_bus *bus;
	struct usb_device *dev;

	for (bus = usb_get_busses(); bus; bus = bus->next)
		for (dev = bus->devices; dev; dev = dev->next)
			if ((dev->descriptor.idVendor == vid) &&
			    (dev->descriptor.idProduct == pid))
				return dev;

	return NULL;
}

//int usb_control_msg(usb_dev_handle *dev, int requesttype, int request, int value, int index, char *bytes, int size, int timeout);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/* Set/clear LEDs on dediprog */
#define PASS_ON		(0 << 0)
#define PASS_OFF	(1 << 0)
#define BUSY_ON		(0 << 1)
#define BUSY_OFF	(1 << 1)
#define ERROR_ON	(0 << 2)
#define ERROR_OFF	(1 << 2)
static int current_led_status = -1;

static int dediprog_set_leds(int leds)
{
	int ret, target_leds;
	
	if (leds < 0 || leds > 7)
		leds = 0; // Bogus value, enable all LEDs

	if (leds == current_led_status)
		return 0;

	/* Older Dediprogs with 2.x.x and 3.x.x firmware only had
	 * two LEDs, and they were reversed. So map them around if 
	 * we have an old device. On those devices the LEDs map as
	 * follows:
	 *   bit 2 == 0: green light is on.
	 *   bit 0 == 0: red light is on. 
	 */
	if (dediprog_firmwareversion < FIRMWARE_VERSION(5,0,0)) {
		target_leds = ((leds & ERROR_OFF) >> 2) | 
			((leds & PASS_OFF) << 2);
	} else {
		target_leds = leds;
	}

	ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, target_leds, NULL, 0x0, DEFAULT_TIMEOUT);
	if (ret != 0x0) {
		msg_perr("Command Set LED 0x%x failed (%s)!\n", leds, usb_strerror());
		return 1;
	}

	current_led_status = leds;

	return 0;
}

106
static int dediprog_set_spi_voltage(int millivolt)
107 108
{
	int ret;
109
	uint16_t voltage_selector;
110

111 112
	switch (millivolt) {
	case 0:
113
		/* Admittedly this one is an assumption. */
114
		voltage_selector = 0x0;
115
		break;
116 117
	case 1800:
		voltage_selector = 0x12;
118
		break;
119 120
	case 2500:
		voltage_selector = 0x11;
121
		break;
122 123
	case 3500:
		voltage_selector = 0x10;
124 125
		break;
	default:
126
		msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt);
127 128
		return 1;
	}
129 130
	msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000,
		 millivolt % 1000);
131

132
	ret = usb_control_msg(dediprog_handle, 0x42, 0x9, voltage_selector, 0xff, NULL, 0x0, DEFAULT_TIMEOUT);
133
	if (ret != 0x0) {
134
		msg_perr("Command Set SPI Voltage 0x%x failed!\n", voltage_selector);
135 136 137 138 139
		return 1;
	}
	return 0;
}

140
#if 0
141 142 143 144 145 146 147
/* After dediprog_set_spi_speed, the original app always calls
 * dediprog_set_spi_voltage(0) and then
 * dediprog_check_devicestring() four times in a row.
 * After that, dediprog_command_a() is called.
 * This looks suspiciously like the microprocessor in the SF100 has to be
 * restarted/reinitialized in case the speed changes.
 */
148
static int dediprog_set_spi_speed(uint16_t speed)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	int ret;
	unsigned int khz;

	/* Case 1 and 2 are in weird order. Probably an organically "grown"
	 * interface.
	 * Base frequency is 24000 kHz, divisors are (in order)
	 * 1, 3, 2, 8, 11, 16, 32, 64.
	 */
	switch (speed) {
	case 0x0:
		khz = 24000;
		break;
	case 0x1:
		khz = 8000;
		break;
	case 0x2:
		khz = 12000;
		break;
	case 0x3:
		khz = 3000;
		break;
	case 0x4:
		khz = 2180;
		break;
	case 0x5:
		khz = 1500;
		break;
	case 0x6:
		khz = 750;
		break;
	case 0x7:
		khz = 375;
		break;
	default:
		msg_perr("Unknown frequency selector 0x%x! Aborting.\n", speed);
		return 1;
	}
	msg_pdbg("Setting SPI speed to %u kHz\n", khz);

	ret = usb_control_msg(dediprog_handle, 0x42, 0x61, speed, 0xff, NULL, 0x0, DEFAULT_TIMEOUT);
	if (ret != 0x0) {
		msg_perr("Command Set SPI Speed 0x%x failed!\n", speed);
		return 1;
	}
	return 0;
}
196
#endif
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes.
 * @start	start address
 * @len		length
 * @return	0 on success, 1 on failure
 */
static int dediprog_spi_bulk_read(struct flashchip *flash, uint8_t *buf,
				  int start, int len)
{
	int ret;
	int i;
	/* chunksize must be 512, other sizes will NOT work at all. */
	const int chunksize = 0x200;
	const int count = len / chunksize;
	const char count_and_chunk[] = {count & 0xff,
					(count >> 8) & 0xff,
					chunksize & 0xff,
					(chunksize >> 8) & 0xff};

	if ((start % chunksize) || (len % chunksize)) {
		msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
			 "at flashrom@flashrom.org\n", __func__, start, len);
		return 1;
	}

	/* No idea if the hardware can handle empty reads, so chicken out. */
	if (!len)
		return 0;
	/* Command Read SPI Bulk. No idea which read command is used on the
	 * SPI side.
	 */
	ret = usb_control_msg(dediprog_handle, 0x42, 0x20, start % 0x10000,
			      start / 0x10000, (char *)count_and_chunk,
			      sizeof(count_and_chunk), DEFAULT_TIMEOUT);
	if (ret != sizeof(count_and_chunk)) {
		msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret,
			 usb_strerror());
		return 1;
	}

	for (i = 0; i < count; i++) {
		ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint,
				    (char *)buf + i * chunksize, chunksize,
				    DEFAULT_TIMEOUT);
		if (ret != chunksize) {
			msg_perr("SPI bulk read %i failed, expected %i, got %i "
				 "%s!\n", i, chunksize, ret, usb_strerror());
			return 1;
		}
	}

	return 0;
}

251
static int dediprog_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len)
252
{
253 254 255 256 257 258
	int ret;
	/* chunksize must be 512, other sizes will NOT work at all. */
	const int chunksize = 0x200;
	int residue = start % chunksize ? chunksize - start % chunksize : 0;
	int bulklen;

259 260
	dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);

261 262 263 264
	if (residue) {
		msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
			 start, residue);
		ret = spi_read_chunked(flash, buf, start, residue, 16);
265 266
		if (ret) {
			dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
267
			return ret;
268
		}
269 270 271 272 273 274
	}

	/* Round down. */
	bulklen = (len - residue) / chunksize * chunksize;
	ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue,
				     bulklen);
275 276
	if (ret) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
277
		return ret;
278
	}
279 280 281 282 283 284 285

	len -= residue + bulklen;
	if (len) {
		msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
			 start, len);
		ret = spi_read_chunked(flash, buf + residue + bulklen,
				       start + residue + bulklen, len, 16);
286 287
		if (ret) {
			dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
288
			return ret;
289
		}
290 291
	}

292
	dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);
293
	return 0;
294 295
}

296
static int dediprog_spi_write_256(struct flashchip *flash, uint8_t *buf, int start, int len)
297
{
298 299 300 301
	int ret;

	dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);

302
	/* No idea about the real limit. Maybe 12, maybe more, maybe less. */
303 304 305 306 307 308 309 310
	ret = spi_write_chunked(flash, buf, start, len, 12);

	if (ret)
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
	else
		dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);

	return ret;
311 312
}

313
static int dediprog_spi_send_command(unsigned int writecnt, unsigned int readcnt,
314 315 316 317
			const unsigned char *writearr, unsigned char *readarr)
{
	int ret;

Carl-Daniel Hailfinger's avatar
Carl-Daniel Hailfinger committed
318
	msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt);
319
	/* Paranoid, but I don't want to be blamed if anything explodes. */
320
	if (writecnt > 16) {
321
		msg_perr("Untested writecnt=%i, aborting.\n", writecnt);
Carl-Daniel Hailfinger's avatar
Carl-Daniel Hailfinger committed
322 323 324 325
		return 1;
	}
	/* 16 byte reads should work. */
	if (readcnt > 16) {
326
		msg_perr("Untested readcnt=%i, aborting.\n", readcnt);
Carl-Daniel Hailfinger's avatar
Carl-Daniel Hailfinger committed
327 328
		return 1;
	}
329 330 331
	
	ret = usb_control_msg(dediprog_handle, 0x42, 0x1, 0xff, readcnt ? 0x1 : 0x0, (char *)writearr, writecnt, DEFAULT_TIMEOUT);
	if (ret != writecnt) {
Carl-Daniel Hailfinger's avatar
Carl-Daniel Hailfinger committed
332 333
		msg_perr("Send SPI failed, expected %i, got %i %s!\n",
			 writecnt, ret, usb_strerror());
334 335 336 337 338 339 340
		return 1;
	}
	if (!readcnt)
		return 0;
	memset(readarr, 0, readcnt);
	ret = usb_control_msg(dediprog_handle, 0xc2, 0x01, 0xbb8, 0x0000, (char *)readarr, readcnt, DEFAULT_TIMEOUT);
	if (ret != readcnt) {
Carl-Daniel Hailfinger's avatar
Carl-Daniel Hailfinger committed
341 342
		msg_perr("Receive SPI failed, expected %i, got %i %s!\n",
			 readcnt, ret, usb_strerror());
343 344 345 346 347
		return 1;
	}
	return 0;
}

348
static int dediprog_check_devicestring(void)
349 350
{
	int ret;
351
	int fw[3];
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	char buf[0x11];

	/* Command Prepare Receive Device String. */
	memset(buf, 0, sizeof(buf));
	ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef03, buf, 0x1, DEFAULT_TIMEOUT);
	/* The char casting is needed to stop gcc complaining about an always true comparison. */
	if ((ret != 0x1) || (buf[0] != (char)0xff)) {
		msg_perr("Unexpected response to Command Prepare Receive Device"
			 " String!\n");
		return 1;
	}
	/* Command Receive Device String. */
	memset(buf, 0, sizeof(buf));
	ret = usb_control_msg(dediprog_handle, 0xc2, 0x8, 0xff, 0xff, buf, 0x10, DEFAULT_TIMEOUT);
	if (ret != 0x10) {
		msg_perr("Incomplete/failed Command Receive Device String!\n");
		return 1;
	}
	buf[0x10] = '\0';
	msg_pdbg("Found a %s\n", buf);
	if (memcmp(buf, "SF100", 0x5)) {
		msg_perr("Device not a SF100!\n");
		return 1;
	}
376 377 378 379
	if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) {
		msg_perr("Unexpected firmware version string!\n");
		return 1;
	}
380
	/* Only these versions were tested. */
381 382 383
	if (fw[0] < 2 || fw[0] > 5) {
		msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0],
			 fw[1], fw[2]);
384 385
		return 1;
	}
386
	dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]);
387 388 389 390 391 392 393
	return 0;
}

/* Command A seems to be some sort of device init. It is either followed by
 * dediprog_check_devicestring (often) or Command A (often) or
 * Command F (once).
 */
394
static int dediprog_command_a(void)
395 396 397 398 399 400
{
	int ret;
	char buf[0x1];

	memset(buf, 0, sizeof(buf));
	ret = usb_control_msg(dediprog_handle, 0xc3, 0xb, 0x0, 0x0, buf, 0x1, DEFAULT_TIMEOUT);
401 402 403 404
	if (ret < 0) {
		msg_perr("Command A failed (%s)!\n", usb_strerror());
		return 1;
	}
405 406 407 408 409 410 411
	if ((ret != 0x1) || (buf[0] != 0x6f)) {
		msg_perr("Unexpected response to Command A!\n");
		return 1;
	}
	return 0;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#if 0
/* Something.
 * Present in eng_detect_blink.log with firmware 3.1.8
 * Always preceded by Command Receive Device String
 */
static int dediprog_command_b(void)
{
	int ret;
	char buf[0x3];

	memset(buf, 0, sizeof(buf));
	ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef00, buf, 0x3, DEFAULT_TIMEOUT);
	if (ret < 0) {
		msg_perr("Command B failed (%s)!\n", usb_strerror());
		return 1;
	}
	if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) ||
	    (buf[2] != 0xff)) {
		msg_perr("Unexpected response to Command B!\n");
		return 1;
	}

	return 0;
}
#endif

438 439 440 441 442
/* Command C is only sent after dediprog_check_devicestring, but not after every
 * invocation of dediprog_check_devicestring. It is only sent after the first
 * dediprog_command_a(); dediprog_check_devicestring() sequence in each session.
 * I'm tempted to call this one start_SPI_engine or finish_init.
 */
443
static int dediprog_command_c(void)
444 445 446 447 448
{
	int ret;

	ret = usb_control_msg(dediprog_handle, 0x42, 0x4, 0x0, 0x0, NULL, 0x0, DEFAULT_TIMEOUT);
	if (ret != 0x0) {
449
		msg_perr("Command C failed (%s)!\n", usb_strerror());
450 451 452 453 454
		return 1;
	}
	return 0;
}

455
#if 0
456 457 458
/* Very strange. Seems to be a programmer keepalive or somesuch.
 * Wait unsuccessfully for timeout ms to read one byte.
 * Is usually called after setting voltage to 0.
459
 * Present in all logs with Firmware 2.1.1 and 3.1.8
460
 */
461
static int dediprog_command_f(int timeout)
462 463 464 465 466 467
{
	int ret;
	char buf[0x1];

	memset(buf, 0, sizeof(buf));
	ret = usb_control_msg(dediprog_handle, 0xc2, 0x11, 0xff, 0xff, buf, 0x1, timeout);
468 469 470 471 472 473 474 475 476 477
	/* This check is most probably wrong. Command F always causes a timeout
	 * in the logs, so we should check for timeout instead of checking for
	 * success.
	 */
	if (ret != 0x1) {
		msg_perr("Command F failed (%s)!\n", usb_strerror());
		return 1;
	}
	return 0;
}
478
#endif
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static int parse_voltage(char *voltage)
{
	char *tmp = NULL;
	int i;
	int millivolt;
	int fraction = 0;

	if (!voltage || !strlen(voltage)) {
		msg_perr("Empty voltage= specified.\n");
		return -1;
	}
	millivolt = (int)strtol(voltage, &tmp, 0);
	voltage = tmp;
	/* Handle "," and "." as decimal point. Everything after it is assumed
	 * to be in decimal notation.
	 */
	if ((*voltage == '.') || (*voltage == ',')) {
		voltage++;
		for (i = 0; i < 3; i++) {
			fraction *= 10;
			/* Don't advance if the current character is invalid,
			 * but continue multiplying.
			 */
			if ((*voltage < '0') || (*voltage > '9'))
				continue;
			fraction += *voltage - '0';
			voltage++;
		}
		/* Throw away remaining digits. */
		voltage += strspn(voltage, "0123456789");
	}
	/* The remaining string must be empty or "mV" or "V". */
	tolower_string(voltage);

	/* No unit or "V". */
	if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) {
		millivolt *= 1000;
		millivolt += fraction;
	} else if (!strncmp(voltage, "mv", 2) ||
		   !strncmp(voltage, "milliv", 6)) {
		/* No adjustment. fraction is discarded. */
	} else {
		/* Garbage at the end of the string. */
		msg_perr("Garbage voltage= specified.\n");
		return -1;
	}
	return millivolt;
}

529 530 531 532 533 534 535 536 537 538
static const struct spi_programmer spi_programmer_dediprog = {
	.type = SPI_CONTROLLER_DEDIPROG,
	.max_data_read = MAX_DATA_UNSPECIFIED,
	.max_data_write = MAX_DATA_UNSPECIFIED,
	.command = dediprog_spi_send_command,
	.multicommand = default_spi_send_multicommand,
	.read = dediprog_spi_read,
	.write_256 = dediprog_spi_write_256,
};

539 540 541 542
/* URB numbers refer to the first log ever captured. */
int dediprog_init(void)
{
	struct usb_device *dev;
543 544
	char *voltage;
	int millivolt = 3500;
545
	int ret;
546 547 548

	msg_pspew("%s\n", __func__);

549 550 551 552 553 554 555 556 557 558
	voltage = extract_programmer_param("voltage");
	if (voltage) {
		millivolt = parse_voltage(voltage);
		free(voltage);
		if (millivolt < 0) {
			return 1;
		}
		msg_pinfo("Setting voltage to %i mV\n", millivolt);
	}

559 560 561 562 563 564 565 566 567 568 569 570 571
	/* Here comes the USB stuff. */
	usb_init();
	usb_find_busses();
	usb_find_devices();
	dev = get_device_by_vid_pid(0x0483, 0xdada);
	if (!dev) {
		msg_perr("Could not find a Dediprog SF100 on USB!\n");
		return 1;
	}
	msg_pdbg("Found USB device (%04x:%04x).\n",
		 dev->descriptor.idVendor,
		 dev->descriptor.idProduct);
	dediprog_handle = usb_open(dev);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	ret = usb_set_configuration(dediprog_handle, 1);
	if (ret < 0) {
		msg_perr("Could not set USB device configuration: %i %s\n",
			 ret, usb_strerror());
		if (usb_close(dediprog_handle))
			msg_perr("Could not close USB device!\n");
		return 1;
	}
	ret = usb_claim_interface(dediprog_handle, 0);
	if (ret < 0) {
		msg_perr("Could not claim USB device interface %i: %i %s\n",
			 0, ret, usb_strerror());
		if (usb_close(dediprog_handle))
			msg_perr("Could not close USB device!\n");
		return 1;
	}
	dediprog_endpoint = 2;
589 590 591
	
	dediprog_set_leds(PASS_ON|BUSY_ON|ERROR_ON);

592
	/* URB 6. Command A. */
593 594
	if (dediprog_command_a()) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
595
		return 1;
596
	}
597
	/* URB 7. Command A. */
598 599
	if (dediprog_command_a()) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
600
		return 1;
601
	}
602 603
	/* URB 8. Command Prepare Receive Device String. */
	/* URB 9. Command Receive Device String. */
604 605
	if (dediprog_check_devicestring()) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
606
		return 1;
607
	}
608
	/* URB 10. Command C. */
609 610
	if (dediprog_command_c()) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
611
		return 1;
612
	}
613
	/* URB 11. Command Set SPI Voltage. */
614 615
	if (dediprog_set_spi_voltage(millivolt)) {
		dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
616
		return 1;
617
	}
618

619
	register_spi_programmer(&spi_programmer_dediprog);
620 621 622 623 624 625 626

	/* RE leftover, leave in until the driver is complete. */
#if 0
	/* Execute RDID by hand if you want to test it. */
	dediprog_do_stuff();
#endif

627 628
	dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_OFF);

629 630 631
	return 0;
}

632
#if 0
633 634 635
/* Leftovers from reverse engineering. Keep for documentation purposes until
 * completely understood.
 */
636
static int dediprog_do_stuff(void)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
{
	char buf[0x4];
	/* SPI command processing starts here. */

	/* URB 12. Command Send SPI. */
	/* URB 13. Command Receive SPI. */
	memset(buf, 0, sizeof(buf));
	/* JEDEC RDID */
	msg_pdbg("Sending RDID\n");
	buf[0] = JEDEC_RDID;
	if (dediprog_spi_send_command(JEDEC_RDID_OUTSIZE, JEDEC_RDID_INSIZE, (unsigned char *)buf, (unsigned char *)buf))
		return 1;
	msg_pdbg("Receiving response: ");
	print_hex(buf, JEDEC_RDID_INSIZE);
	/* URB 14-27 are more SPI commands. */
	/* URB 28. Command Set SPI Voltage. */
	if (dediprog_set_spi_voltage(0x0))
		return 1;
	/* URB 29-38. Command F, unsuccessful wait. */
	if (dediprog_command_f(544))
		return 1;
	/* URB 39. Command Set SPI Voltage. */
	if (dediprog_set_spi_voltage(0x10))
		return 1;
	/* URB 40. Command Set SPI Speed. */
	if (dediprog_set_spi_speed(0x2))
		return 1;
	/* URB 41 is just URB 28. */
	/* URB 42,44,46,48,51,53 is just URB 8. */
	/* URB 43,45,47,49,52,54 is just URB 9. */
	/* URB 50 is just URB 6/7. */
	/* URB 55-131 is just URB 29-38. (wait unsuccessfully for 4695 (maybe 4751) ms)*/
	/* URB 132,134 is just URB 6/7. */
	/* URB 133 is just URB 29-38. */
	/* URB 135 is just URB 8. */
	/* URB 136 is just URB 9. */
	/* URB 137 is just URB 11. */

675 676 677 678 679
	/* Command Start Bulk Read. Data is u16 blockcount, u16 blocksize. */
	/* Command Start Bulk Write. Data is u16 blockcount, u16 blocksize. */
	/* Bulk transfer sizes for Command Start Bulk Read/Write are always
	 * 512 bytes, rest is filled with 0xff.
	 */
680 681 682

	return 0;
}
683
#endif	
684 685 686 687 688 689 690 691 692

int dediprog_shutdown(void)
{
	msg_pspew("%s\n", __func__);

	/* URB 28. Command Set SPI Voltage to 0. */
	if (dediprog_set_spi_voltage(0x0))
		return 1;

693 694 695 696
	if (usb_release_interface(dediprog_handle, 0)) {
		msg_perr("Could not release USB interface!\n");
		return 1;
	}
697
	if (usb_close(dediprog_handle)) {
698
		msg_perr("Could not close USB device!\n");
699 700 701 702
		return 1;
	}
	return 0;
}