at45db.c 19 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Support for Atmel AT45DB series DataFlash chips.
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2012 Aidan Thornton
 * Copyright (C) 2013 Stefan Tauner
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#include <string.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"

/* Status register bits */
#define AT45DB_READY	(1<<7)
#define AT45DB_CMP	(1<<6)
#define AT45DB_PROT	(1<<1)
#define AT45DB_POWEROF2	(1<<0)

/* Opcodes */
#define AT45DB_STATUS 0xD7 /* NB: this is a block erase command on most other chips(!). */
#define AT45DB_DISABLE_PROTECT 0x3D, 0x2A, 0x7F, 0x9A
Stefan Tauner's avatar
Stefan Tauner committed
37
#define AT45DB_READ_ARRAY 0xE8
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#define AT45DB_READ_PROTECT 0x32
#define AT45DB_READ_LOCKDOWN 0x35
#define AT45DB_PAGE_ERASE 0x81
#define AT45DB_BLOCK_ERASE 0x50
#define AT45DB_SECTOR_ERASE 0x7C
#define AT45DB_CHIP_ERASE 0xC7
#define AT45DB_CHIP_ERASE_ADDR 0x94809A /* Magic address. See usage. */
#define AT45DB_BUFFER1_WRITE 0x84
#define AT45DB_BUFFER1_PAGE_PROGRAM 0x88
/* Buffer 2 is unused yet.
#define AT45DB_BUFFER2_WRITE 0x87
#define AT45DB_BUFFER2_PAGE_PROGRAM 0x89
*/

static uint8_t at45db_read_status_register(struct flashctx *flash, uint8_t *status)
{
	static const uint8_t cmd[] = { AT45DB_STATUS };

	int ret = spi_send_command(flash, sizeof(cmd), 1, cmd, status);
	if (ret != 0)
		msg_cerr("Reading the status register failed!\n");
	else
		msg_cspew("Status register: 0x%02x.\n", *status);
	return ret;
}

int spi_disable_blockprotect_at45db(struct flashctx *flash)
{
	static const uint8_t cmd[4] = { AT45DB_DISABLE_PROTECT }; /* NB: 4 bytes magic number */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("Sending disable lockdown failed!\n");
		return ret;
	}
	uint8_t status;
	ret = at45db_read_status_register(flash, &status);
	if (ret != 0 || ((status & AT45DB_PROT) != 0)) {
		msg_cerr("Disabling lockdown failed!\n");
		return 1;
	}

	return 0;
}

static unsigned int at45db_get_sector_count(struct flashctx *flash)
{
	unsigned int i, j;
	unsigned int cnt = 0;
	for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
		if (flash->chip->block_erasers[i].block_erase == &spi_erase_at45db_sector) {
			for (j = 0; j < NUM_ERASEREGIONS; j++) {
				cnt += flash->chip->block_erasers[i].eraseblocks[j].count;
			}
		}
	}
	msg_cspew("%s: number of sectors=%u\n", __func__, cnt);
	return cnt;
}

/* Reads and prettyprints protection/lockdown registers.
 * Some elegance of the printouts had to be cut down a bit to share this code. */
static uint8_t at45db_prettyprint_protection_register(struct flashctx *flash, uint8_t opcode, const char *regname)
{
	const uint8_t cmd[] = { opcode, 0, 0, 0 };
	/* The first two sectors share the first result byte. */
	uint8_t buf[at45db_get_sector_count(flash) - 1];

	int ret = spi_send_command(flash, sizeof(cmd), sizeof(buf), cmd, buf);
	if (ret != 0) {
		msg_cerr("Reading the %s register failed!\n", regname);
		return ret;
	}

	unsigned int i;
	for (i = 0; i < sizeof(buf); i++) {
		if (buf[i] != 0x00)
			break;
		if (i == sizeof(buf) - 1) {
			msg_cdbg("No Sector is %sed.\n", regname);
			return 0;
		}
	}

	/* TODO: print which addresses are mapped to (un)locked sectors. */
	msg_cdbg("Sector 0a is %s%sed.\n", ((buf[0] & 0xC0) == 0x00) ? "un" : "", regname);
	msg_cdbg("Sector 0b is %s%sed.\n", ((buf[0] & 0x30) == 0x00) ? "un" : "", regname);
	for (i = 1; i < sizeof(buf); i++)
		msg_cdbg("Sector %2u is %s%sed.\n", i, (buf[i] == 0x00) ? "un" : "", regname);

	return 0;
}

/* bit 7: busy flag
 * bit 6: memory/buffer compare result
 * bit 5-2: density (encoding see below)
 * bit 1: protection enabled (soft or hard)
 * bit 0: "power of 2" page size indicator (e.g. 1 means 256B; 0 means 264B)
 *
 * 5-2 encoding: bit 2 is always 1, bits 3-5 encode the density as "2^(bits - 1)" in Mb e.g.:
 * AT45DB161D  1011  16Mb */
int spi_prettyprint_status_register_at45db(struct flashctx *flash)
{
	uint8_t status;
	if (at45db_read_status_register(flash, &status) != 0) {
		return 1;
	}

Stefan Tauner's avatar
Stefan Tauner committed
145 146
	/* AT45DB321C does not support lockdown or a page size of a power of 2... */
	const bool isAT45DB321C = (strcmp(flash->chip->name, "AT45DB321C") == 0);
147 148 149 150 151 152 153 154 155 156
	msg_cdbg("Chip status register is 0x%02x\n", status);
	msg_cdbg("Chip status register: Bit 7 / Ready is %sset\n", (status & AT45DB_READY) ? "" : "not ");
	msg_cdbg("Chip status register: Bit 6 / Compare match is %sset\n", (status & AT45DB_CMP) ? "" : "not ");
	spi_prettyprint_status_register_bit(status, 5);
	spi_prettyprint_status_register_bit(status, 4);
	spi_prettyprint_status_register_bit(status, 3);
	spi_prettyprint_status_register_bit(status, 2);
	const uint8_t dens = (status >> 3) & 0x7; /* Bit 2 is always 1, we use the other bits only */
	msg_cdbg("Chip status register: Density is %u Mb\n", 1 << (dens - 1));
	msg_cdbg("Chip status register: Bit 1 / Protection is %sset\n", (status & AT45DB_PROT) ? "" : "not ");
Stefan Tauner's avatar
Stefan Tauner committed
157 158 159 160 161 162 163

	if (isAT45DB321C)
		spi_prettyprint_status_register_bit(status, 0);
	else
		msg_cdbg("Chip status register: Bit 0 / \"Power of 2\" is %sset\n",
			 (status & AT45DB_POWEROF2) ? "" : "not ");

164 165 166
	if (status & AT45DB_PROT)
		at45db_prettyprint_protection_register(flash, AT45DB_READ_PROTECT, "protect");

Stefan Tauner's avatar
Stefan Tauner committed
167 168
	if (!isAT45DB321C)
		at45db_prettyprint_protection_register(flash, AT45DB_READ_LOCKDOWN, "lock");
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

	return 0;
}

/* Probe function for AT45DB* chips that support multiple page sizes. */
int probe_spi_at45db(struct flashctx *flash)
{
	uint8_t status;
	struct flashchip *chip = flash->chip;

	if (!probe_spi_rdid(flash))
		return 0;

	/* Some AT45DB* chips support two different page sizes each (e.g. 264 and 256 B). In order to tell which
	 * page size this chip has we need to read the status register. */
	if (at45db_read_status_register(flash, &status) != 0)
		return 0;

	/* We assume sane power-of-2 page sizes and adjust the chip attributes in case this is not the case. */
	if ((status & AT45DB_POWEROF2) == 0) {
		chip->total_size = (chip->total_size / 32) * 33;
		chip->page_size = (chip->page_size / 32) * 33;

		unsigned int i, j;
		for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
			struct block_eraser *eraser = &chip->block_erasers[i];
			for (j = 0; j < NUM_ERASEREGIONS; j++) {
				eraser->eraseblocks[j].size = (eraser->eraseblocks[j].size / 32) * 33;
			}
		}
	}

	switch (chip->page_size) {
	case 256: chip->gran = write_gran_256bytes; break;
	case 264: chip->gran = write_gran_264bytes; break;
	case 512: chip->gran = write_gran_512bytes; break;
	case 528: chip->gran = write_gran_528bytes; break;
	case 1024: chip->gran = write_gran_1024bytes; break;
	case 1056: chip->gran = write_gran_1056bytes; break;
	default:
		msg_cerr("%s: unknown page size %d.\n", __func__, chip->page_size);
		return 0;
	}

	msg_cdbg2("%s: total size %i kB, page size %i B\n", __func__, chip->total_size * 1024, chip->page_size);

	return 1;
}

/* In case of non-power-of-two page sizes we need to convert the address flashrom uses to the address the
 * DataFlash chips use. The latter uses a segmented address space where the page address is encoded in the
 * more significant bits and the offset within the page is encoded in the less significant bits. The exact
 * partition depends on the page size.
 */
static unsigned int at45db_convert_addr(unsigned int addr, unsigned int page_size)
{
	unsigned int page_bits = address_to_bits(page_size - 1);
	unsigned int at45db_addr = ((addr / page_size) << page_bits) | (addr % page_size);
	msg_cspew("%s: addr=0x%x, page_size=%u, page_bits=%u -> at45db_addr=0x%x\n",
		  __func__, addr, page_size, page_bits, at45db_addr);
	return at45db_addr;
}

int spi_read_at45db(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	if ((addr + len) > total_size) {
		msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
			 __func__, addr, len, total_size);
		return 1;
	}

	/* We have to split this up into chunks to fit within the programmer's read size limit, but those
	 * chunks can cross page boundaries. */
244
	const unsigned int max_data_read = flash->mst->spi.max_data_read;
245
	const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
Stefan Tauner's avatar
Stefan Tauner committed
246
	while (len > 0) {
247
		unsigned int chunk = min(max_chunk, len);
Stefan Tauner's avatar
Stefan Tauner committed
248
		int ret = spi_nbyte_read(flash, at45db_convert_addr(addr, page_size), buf, chunk);
249 250 251 252 253
		if (ret) {
			msg_cerr("%s: error sending read command!\n", __func__);
			return ret;
		}
		addr += chunk;
Stefan Tauner's avatar
Stefan Tauner committed
254 255
		buf += chunk;
		len -= chunk;
256 257 258 259 260
	}

	return 0;
}

Stefan Tauner's avatar
Stefan Tauner committed
261 262 263 264 265 266 267 268 269 270 271 272 273 274
/* Legacy continuous read, used where spi_read_at45db() is not available.
 * The first 4 (dummy) bytes read need to be discarded. */
int spi_read_at45db_e8(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	if ((addr + len) > total_size) {
		msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
			 __func__, addr, len, total_size);
		return 1;
	}

	/* We have to split this up into chunks to fit within the programmer's read size limit, but those
	 * chunks can cross page boundaries. */
275
	const unsigned int max_data_read = flash->mst->spi.max_data_read;
Stefan Tauner's avatar
Stefan Tauner committed
276
	const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
Stefan Tauner's avatar
Stefan Tauner committed
277
	while (len > 0) {
Stefan Tauner's avatar
Stefan Tauner committed
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		const unsigned int addr_at45 = at45db_convert_addr(addr, page_size);
		const unsigned char cmd[] = {
			AT45DB_READ_ARRAY,
			(addr_at45 >> 16) & 0xff,
			(addr_at45 >> 8) & 0xff,
			(addr_at45 >> 0) & 0xff
		};
		/* We need to leave place for 4 dummy bytes and handle them explicitly. */
		unsigned int chunk = min(max_chunk, len + 4);
		uint8_t tmp[chunk];
		int ret = spi_send_command(flash, sizeof(cmd), chunk, cmd, tmp);
		if (ret) {
			msg_cerr("%s: error sending read command!\n", __func__);
			return ret;
		}
		/* Copy result without dummy bytes into buf and advance address counter respectively. */
Stefan Tauner's avatar
Stefan Tauner committed
294
		memcpy(buf, tmp + 4, chunk - 4);
Stefan Tauner's avatar
Stefan Tauner committed
295
		addr += chunk - 4;
Stefan Tauner's avatar
Stefan Tauner committed
296 297
		buf += chunk - 4;
		len -= chunk - 4;
Stefan Tauner's avatar
Stefan Tauner committed
298 299 300 301
	}
	return 0;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/* Returns 0 when ready, 1 on errors and timeouts. */
static int at45db_wait_ready (struct flashctx *flash, unsigned int us, unsigned int retries)
{
	while (true) {
		uint8_t status;
		int ret = at45db_read_status_register(flash, &status);
		if ((status & AT45DB_READY) == AT45DB_READY)
			return 0;
		if (ret != 0 || retries-- == 0)
			return 1;
		programmer_delay(us);
	}
}

static int at45db_erase(struct flashctx *flash, uint8_t opcode, unsigned int at45db_addr, unsigned int stepsize, unsigned int retries)
{
	const uint8_t cmd[] = {
		opcode,
		(at45db_addr >> 16) & 0xff,
		(at45db_addr >> 8) & 0xff,
		(at45db_addr >> 0) & 0xff
	};

	/* Send erase command. */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("%s: error sending erase command!\n", __func__);
		return ret;
	}

	/* Wait for completion. */
	ret = at45db_wait_ready(flash, stepsize, retries);
	if (ret != 0)
		msg_cerr("%s: chip did not became ready again after sending the erase command!\n", __func__);

	return ret;
}

int spi_erase_at45db_page(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) {
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically about 35 ms for completion, so let's wait 100 ms in 500 us steps. */
	return at45db_erase(flash, AT45DB_PAGE_ERASE, at45db_convert_addr(addr, page_size), 500, 200);
}

int spi_erase_at45db_block(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check blocks not pages
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically between 20 and 100 ms for completion, so let's wait 300 ms in 1 ms steps. */
	return at45db_erase(flash, AT45DB_BLOCK_ERASE, at45db_convert_addr(addr, page_size), 1000, 300);
}

int spi_erase_at45db_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check sectors not pages
		msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically about 5 s for completion, so let's wait 20 seconds in 200 ms steps. */
	return at45db_erase(flash, AT45DB_SECTOR_ERASE, at45db_convert_addr(addr, page_size), 200000, 100);
}

int spi_erase_at45db_chip(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int total_size = flash->chip->total_size * 1024;
	
	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	/* Needs typically from about 5 to over 60 s for completion, so let's wait 100 s in 500 ms steps.
	 * NB: the address is not a real address but a magic number. This hack allows to share code. */
	return at45db_erase(flash, AT45DB_CHIP_ERASE, AT45DB_CHIP_ERASE_ADDR, 500000, 200);
}

Stefan Tauner's avatar
Stefan Tauner committed
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* This one is really special and works only for AT45CS1282. It uses two different opcodes depending on the
 * address and has an asymmetric layout. */
int spi_erase_at45cs_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size * 1024;
	const struct block_eraser be = flash->chip->block_erasers[0];
	const unsigned int sec_0a_top = be.eraseblocks[0].size;
	const unsigned int sec_0b_top = be.eraseblocks[0].size + be.eraseblocks[1].size;

	if ((addr + blocklen) > total_size) {
		msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
			 __func__, addr, blocklen, total_size);
		return 1;
	}

	bool partial_range = false;
	uint8_t opcode = 0x7C; /* Used for all but sector 0a. */
	if (addr < sec_0a_top) {
		opcode = 0x50;
		/* One single sector of 8 pages at address 0. */
		if (addr != 0 || blocklen != (8 * page_size))
			partial_range = true;
	} else if (addr < sec_0b_top) {
		/* One single sector of 248 pages adjacent to the first. */
		if (addr != sec_0a_top || blocklen != (248 * page_size))
			partial_range = true;
	} else {
		/* The rest is filled by 63 aligned sectors of 256 pages. */
		if ((addr % (256 * page_size)) != 0 || (blocklen % (256 * page_size)) != 0)
			partial_range = true;
	}
	if (partial_range) {
		msg_cerr("%s: cannot erase partial sectors: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
		return 1;
	}

	/* Needs up to 4 s for completion, so let's wait 20 seconds in 200 ms steps. */
	return at45db_erase(flash, opcode, at45db_convert_addr(addr, page_size), 200000, 100);
}

456
static int at45db_fill_buffer1(struct flashctx *flash, const uint8_t *bytes, unsigned int off, unsigned int len)
457 458 459 460 461 462 463 464 465
{
	const unsigned int page_size = flash->chip->page_size;
	if ((off + len) > page_size) {
		msg_cerr("Tried to write %u bytes at offset %u into a buffer of only %u B.\n",
			 len, off, page_size);
		return 1;
	}

	/* Create a suitable buffer to store opcode, address and data chunks for buffer1. */
466
	const unsigned int max_data_write = flash->mst->spi.max_data_write;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	const unsigned int max_chunk = (max_data_write > 0 && max_data_write <= page_size) ?
				       max_data_write : page_size;
	uint8_t buf[4 + max_chunk];

	buf[0] = AT45DB_BUFFER1_WRITE;
	while (off < page_size) {
		unsigned int cur_chunk = min(max_chunk, page_size - off);
		buf[1] = (off >> 16) & 0xff;
		buf[2] = (off >> 8) & 0xff;
		buf[3] = (off >> 0) & 0xff;
		memcpy(&buf[4], bytes + off, cur_chunk);
		int ret = spi_send_command(flash, 4 + cur_chunk, 0, buf, NULL);
		if (ret != 0) {
			msg_cerr("%s: error sending buffer write!\n", __func__);
			return ret;
		}
		off += cur_chunk;
	}
	return 0;
}

static int at45db_commit_buffer1(struct flashctx *flash, unsigned int at45db_addr)
{
	const uint8_t cmd[] = {
		AT45DB_BUFFER1_PAGE_PROGRAM,
		(at45db_addr >> 16) & 0xff,
		(at45db_addr >> 8) & 0xff,
		(at45db_addr >> 0) & 0xff
	};

	/* Send buffer to device. */
	int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
	if (ret != 0) {
		msg_cerr("%s: error sending buffer to main memory command!\n", __func__);
		return ret;
	}

	/* Wait for completion (typically a few ms). */
	ret = at45db_wait_ready(flash, 250, 200); // 50 ms
	if (ret != 0) {
		msg_cerr("%s: chip did not became ready again!\n", __func__);
		return ret;
	}

	return 0;
}

514
static int at45db_program_page(struct flashctx *flash, const uint8_t *buf, unsigned int at45db_addr)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
{
	int ret = at45db_fill_buffer1(flash, buf, 0, flash->chip->page_size);
	if (ret != 0) {
		msg_cerr("%s: filling the buffer failed!\n", __func__);
		return ret;
	}

	ret = at45db_commit_buffer1(flash, at45db_addr);
	if (ret != 0) {
		msg_cerr("%s: committing page failed!\n", __func__);
		return ret;
	}

	return 0;
}

531
int spi_write_at45db(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
{
	const unsigned int page_size = flash->chip->page_size;
	const unsigned int total_size = flash->chip->total_size;
	
	if ((start % page_size) != 0 || (len % page_size) != 0) {
		msg_cerr("%s: cannot write partial pages: start=%u, len=%u\n", __func__, start, len);
		return 1;
	}

	if ((start + len) > (total_size * 1024)) {
		msg_cerr("%s: tried to write beyond flash boundary: start=%u, len=%u, size=%u\n",
			 __func__, start, len, total_size);
		return 1;
	}

	unsigned int i;
	for (i = 0; i < len; i += page_size) {
		if (at45db_program_page(flash, buf + i, at45db_convert_addr(start + i, page_size)) != 0) {
			msg_cerr("Writing page %u failed!\n", i);
			return 1;
		}
	}
	return 0;
}